Featured Research

from universities, journals, and other organizations

Cosmology in a Petri dish

Date:
January 26, 2012
Source:
Springer
Summary:
Scientists have found that micron-size particles which are trapped at fluid interfaces exhibit a collective dynamic that is subject to seemingly unrelated governing laws. These laws show a smooth transitioning from long-ranged cosmological-style gravitational attraction down to short-range attractive and repulsive forces.

To understand long-range interactions between particles at the micrometric scale, researchers utilize methods which are used to study the formation of our universe.
Credit: J. Bleibel

To understand long-range interactions between particles at the micrometric scale, researchers utilize methods which are used to study the formation of our universe.

Related Articles


Scientists have found that micron-size particles which are trapped at fluid interfaces exhibit a collective dynamic that is subject to seemingly unrelated governing laws. These laws show a smooth transitioning from long-ranged cosmological-style gravitational attraction down to short-range attractive and repulsive forces. The study is by Johannes Bleibel from the Max Planck Institute for Intelligent Systems in Stuttgart, Germany, and his colleagues.

The authors used so-called colloidal particles that are larger than molecules but too small to be observed with the naked eye. These particles are adsorbed at the interface between two fluids and assembled into a monolayer. This constitutes a 2D model in which particles that are larger than a micron deform the interface through their own weight and generate an effective long-range attraction which looks like gravitation in 2D. Thus, the particles assemble in clusters.

To model long-range forces between particles, the researchers used numerical simulations based on random movement of particles, known as Brownian dynamics. Here, they took advantage of the formal analogy between so-called capillary attraction -- the long-ranged interaction through interface deformation -- and gravitational attraction. They used a particle-mesh method as employed in simulations of what are known as self-gravitating fluids, corresponding to the collapse of a system under its own gravity, traditionally used in cosmological studies.

The authors also found that this long-range interaction no longer matters beyond a certain length determined by the properties of both the particles and the interface, and short-range forces come into play. This means that for systems exceeding this length, particles first tend to self-assemble into several clusters which eventually merge into a single, large cluster.

The study of monolayer aggregates of micron-size colloids is used as a template for nanoparticles deposited onto substrates in nanotechnology applications.


Story Source:

The above story is based on materials provided by Springer. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bleibel J, Domınguez A, Oettel M, Dietrich S. Collective dynamics of colloids at fluid interfaces. European Physical Journal E, 34:125 DOI: 10.1140/epje/i2011-11125-2

Cite This Page:

Springer. "Cosmology in a Petri dish." ScienceDaily. ScienceDaily, 26 January 2012. <www.sciencedaily.com/releases/2012/01/120126101308.htm>.
Springer. (2012, January 26). Cosmology in a Petri dish. ScienceDaily. Retrieved March 1, 2015 from www.sciencedaily.com/releases/2012/01/120126101308.htm
Springer. "Cosmology in a Petri dish." ScienceDaily. www.sciencedaily.com/releases/2012/01/120126101308.htm (accessed March 1, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, March 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Elon Musk's Hyperloop Moves Forward

Elon Musk's Hyperloop Moves Forward

Buzz60 (Feb. 27, 2015) Zipping around at 800-miles an hour is coming closer to reality in California. An entire town is being built around Elon Musk&apos;s Hyperloop concept and it wants you to stop in for a ride when it&apos;s ready. Brett Larson is on board. Video provided by Buzz60
Powered by NewsLook.com
Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
In Japan, Robot Dogs Are for Life -- And Death

In Japan, Robot Dogs Are for Life -- And Death

AFP (Feb. 25, 2015) Robot dogs are the perfect pet for some in Japan who go to repairmen-turned-vets when their pooch breaks down - while a full Buddhist funeral ceremony awaits those who don&apos;t make it. Duration: 02:40 Video provided by AFP
Powered by NewsLook.com
London Show Dissects History of Forensic Science

London Show Dissects History of Forensic Science

AFP (Feb. 25, 2015) Forensic science, which has fascinated generations with its unravelling of gruesome crime mysteries, is being put under the microscope in an exhibition of real criminal investigations in London. Duration: 00:53 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins