Featured Research

from universities, journals, and other organizations

Cosmology in a Petri dish

Date:
January 26, 2012
Source:
Springer
Summary:
Scientists have found that micron-size particles which are trapped at fluid interfaces exhibit a collective dynamic that is subject to seemingly unrelated governing laws. These laws show a smooth transitioning from long-ranged cosmological-style gravitational attraction down to short-range attractive and repulsive forces.

To understand long-range interactions between particles at the micrometric scale, researchers utilize methods which are used to study the formation of our universe.
Credit: J. Bleibel

To understand long-range interactions between particles at the micrometric scale, researchers utilize methods which are used to study the formation of our universe.

Scientists have found that micron-size particles which are trapped at fluid interfaces exhibit a collective dynamic that is subject to seemingly unrelated governing laws. These laws show a smooth transitioning from long-ranged cosmological-style gravitational attraction down to short-range attractive and repulsive forces. The study is by Johannes Bleibel from the Max Planck Institute for Intelligent Systems in Stuttgart, Germany, and his colleagues.

The authors used so-called colloidal particles that are larger than molecules but too small to be observed with the naked eye. These particles are adsorbed at the interface between two fluids and assembled into a monolayer. This constitutes a 2D model in which particles that are larger than a micron deform the interface through their own weight and generate an effective long-range attraction which looks like gravitation in 2D. Thus, the particles assemble in clusters.

To model long-range forces between particles, the researchers used numerical simulations based on random movement of particles, known as Brownian dynamics. Here, they took advantage of the formal analogy between so-called capillary attraction -- the long-ranged interaction through interface deformation -- and gravitational attraction. They used a particle-mesh method as employed in simulations of what are known as self-gravitating fluids, corresponding to the collapse of a system under its own gravity, traditionally used in cosmological studies.

The authors also found that this long-range interaction no longer matters beyond a certain length determined by the properties of both the particles and the interface, and short-range forces come into play. This means that for systems exceeding this length, particles first tend to self-assemble into several clusters which eventually merge into a single, large cluster.

The study of monolayer aggregates of micron-size colloids is used as a template for nanoparticles deposited onto substrates in nanotechnology applications.


Story Source:

The above story is based on materials provided by Springer. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bleibel J, Domınguez A, Oettel M, Dietrich S. Collective dynamics of colloids at fluid interfaces. European Physical Journal E, 34:125 DOI: 10.1140/epje/i2011-11125-2

Cite This Page:

Springer. "Cosmology in a Petri dish." ScienceDaily. ScienceDaily, 26 January 2012. <www.sciencedaily.com/releases/2012/01/120126101308.htm>.
Springer. (2012, January 26). Cosmology in a Petri dish. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2012/01/120126101308.htm
Springer. "Cosmology in a Petri dish." ScienceDaily. www.sciencedaily.com/releases/2012/01/120126101308.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins