Featured Research

from universities, journals, and other organizations

New information for flu fight: Researchers study RNA interference to determine host genes used by influenza for virus replication

Date:
January 28, 2012
Source:
University of Georgia
Summary:
Influenza virus can rapidly evolve from one form to another, complicating the effectiveness of vaccines and anti-viral drugs used to treat it. By first understanding the complex host cell pathways that the flu uses for replication, researchers are finding new strategies for therapies and vaccines, according to a new study.

Influenza virus can rapidly evolve from one form to another, complicating the effectiveness of vaccines and anti-viral drugs used to treat it. By first understanding the complex host cell pathways that the flu uses for replication, University of Georgia researchers are finding new strategies for therapies and vaccines, according to a study published in the January issue of the Journal of the Federation of American Societies for Experimental Biology.

Related Articles


The researchers studied RNA interference to determine the host genes influenza uses for virus replication.

All viruses act as parasites by latching onto healthy cells and hijacking the cells' components, essentially turning the cell into a factory that produces copies of the virus. This process begins when influenza binds to sugars found on the surface of host cells in the lung and respiratory tract. Once attached, the virus downloads its genetic information into the nucleus of the cell, and virus replication begins.

"Viruses contain very minimal genetic information and have evolved to parasitize host cell machinery to package and replicate virus cells. Because virus replication is dependent on host cell components, determining the genes needed for this process allows for the development of novel disease intervention strategies that include anti-virals and vaccines," said study co-author Ralph Tripp, a Georgia Research Alliance Eminent Scholar and Chair of Animal Health Vaccine Development in the UGA College of Veterinary Medicine.

"We have the technology today that allows us to target specific genes in human cells and silence those genes to inhibit the production of virus in the cells," he said.

RNA interference, which was first discovered as the mechanism that effects color change in petunia breeding, is now being applied to medical advancements. Using RNAi silencing technologies, Tripp's lab was able to identify key host cell pathways needed by influenza virus for replication.

"We have a very limited toolbox for treating influenza," Tripp said. "There are two medications currently used to treat flu infections, but virus resistance has developed to these drugs. Our studies have identified several novel host genes and associated cell pathways that can be targeted with existing drugs to silence virus replication."

Understanding which genes can be silenced to inhibit growth of viruses opens the medicine cabinet for the repurposing of existing drugs.

Existing anti-viral drugs slow influenza virus replication by preventing the virus from releasing itself from its host cell. These treatments target the virus, which is able to rapidly mutate to avoid drug sensitivity. In contrast, drugs that target host genes work more effectively because host genes rarely change or mutate.

"If we target a host gene, the virus can't adapt," Tripp said. The influenza virus "may look for other host genes in the same pathway to use, which may be many, but we have identified the majority of preferred genes and can target these genes for silencing."

The influenza A virus has eight single RNA strands that code for 11 proteins. Recent studies suggest it may need several dozen host genes to reproduce. Turning off the apex, or signaling, gene can cause the reproduction sequence to stall.

"Through this research we can repurpose previously approved drugs and apply those to influenza treatments, drastically reducing the time from the laboratory to human medicine," said Victoria Meliopoulos, a UGA graduate student and co-author of the study. "We can manipulate the cellular microenvironment to increase the viral yield during vaccine manufacturing."

Meliopoulos said these discoveries can be used to create new anti-viral drugs and develop better vaccines that can be used to treat patients with influenza. This technology also can be used to improve medications for other viruses like hepatitis and polio.

The technology allows the researchers "to establish a comprehensive roadmap of human genes modulated during influenza virus infection to better understand these disease mechanisms and to identify novel targets for anti-influenza therapy," said Lauren Andersen, a UGA graduate student and co-author of the study.

Influenza is the world's leading cause of morbidity and mortality; seasonal viruses affect up to 15 percent of the human population and cause severe illness in 5 million people a year, according to the Centers for Disease Control and Prevention. In the U.S., financial losses caused by seasonal influenza are estimated to exceed $87 billion annually.


Story Source:

The above story is based on materials provided by University of Georgia. The original article was written by April Sorrow. Note: Materials may be edited for content and length.


Journal Reference:

  1. V. A. Meliopoulos, L. E. Andersen, K. F. Birrer, K. J. Simpson, J. W. Lowenthal, A. G. D. Bean, J. Stambas, C. R. Stewart, S. M. Tompkins, V. W. van Beusechem, I. Fraser, M. Mhlanga, S. Barichievy, Q. Smith, D. Leake, J. Karpilow, A. Buck, G. Jona, R. A. Tripp. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. The FASEB Journal, 2012; DOI: 10.1096/fj.11-193466

Cite This Page:

University of Georgia. "New information for flu fight: Researchers study RNA interference to determine host genes used by influenza for virus replication." ScienceDaily. ScienceDaily, 28 January 2012. <www.sciencedaily.com/releases/2012/01/120127162749.htm>.
University of Georgia. (2012, January 28). New information for flu fight: Researchers study RNA interference to determine host genes used by influenza for virus replication. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2012/01/120127162749.htm
University of Georgia. "New information for flu fight: Researchers study RNA interference to determine host genes used by influenza for virus replication." ScienceDaily. www.sciencedaily.com/releases/2012/01/120127162749.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins