Featured Research

from universities, journals, and other organizations

New information for flu fight: Researchers study RNA interference to determine host genes used by influenza for virus replication

Date:
January 28, 2012
Source:
University of Georgia
Summary:
Influenza virus can rapidly evolve from one form to another, complicating the effectiveness of vaccines and anti-viral drugs used to treat it. By first understanding the complex host cell pathways that the flu uses for replication, researchers are finding new strategies for therapies and vaccines, according to a new study.

Influenza virus can rapidly evolve from one form to another, complicating the effectiveness of vaccines and anti-viral drugs used to treat it. By first understanding the complex host cell pathways that the flu uses for replication, University of Georgia researchers are finding new strategies for therapies and vaccines, according to a study published in the January issue of the Journal of the Federation of American Societies for Experimental Biology.

Related Articles


The researchers studied RNA interference to determine the host genes influenza uses for virus replication.

All viruses act as parasites by latching onto healthy cells and hijacking the cells' components, essentially turning the cell into a factory that produces copies of the virus. This process begins when influenza binds to sugars found on the surface of host cells in the lung and respiratory tract. Once attached, the virus downloads its genetic information into the nucleus of the cell, and virus replication begins.

"Viruses contain very minimal genetic information and have evolved to parasitize host cell machinery to package and replicate virus cells. Because virus replication is dependent on host cell components, determining the genes needed for this process allows for the development of novel disease intervention strategies that include anti-virals and vaccines," said study co-author Ralph Tripp, a Georgia Research Alliance Eminent Scholar and Chair of Animal Health Vaccine Development in the UGA College of Veterinary Medicine.

"We have the technology today that allows us to target specific genes in human cells and silence those genes to inhibit the production of virus in the cells," he said.

RNA interference, which was first discovered as the mechanism that effects color change in petunia breeding, is now being applied to medical advancements. Using RNAi silencing technologies, Tripp's lab was able to identify key host cell pathways needed by influenza virus for replication.

"We have a very limited toolbox for treating influenza," Tripp said. "There are two medications currently used to treat flu infections, but virus resistance has developed to these drugs. Our studies have identified several novel host genes and associated cell pathways that can be targeted with existing drugs to silence virus replication."

Understanding which genes can be silenced to inhibit growth of viruses opens the medicine cabinet for the repurposing of existing drugs.

Existing anti-viral drugs slow influenza virus replication by preventing the virus from releasing itself from its host cell. These treatments target the virus, which is able to rapidly mutate to avoid drug sensitivity. In contrast, drugs that target host genes work more effectively because host genes rarely change or mutate.

"If we target a host gene, the virus can't adapt," Tripp said. The influenza virus "may look for other host genes in the same pathway to use, which may be many, but we have identified the majority of preferred genes and can target these genes for silencing."

The influenza A virus has eight single RNA strands that code for 11 proteins. Recent studies suggest it may need several dozen host genes to reproduce. Turning off the apex, or signaling, gene can cause the reproduction sequence to stall.

"Through this research we can repurpose previously approved drugs and apply those to influenza treatments, drastically reducing the time from the laboratory to human medicine," said Victoria Meliopoulos, a UGA graduate student and co-author of the study. "We can manipulate the cellular microenvironment to increase the viral yield during vaccine manufacturing."

Meliopoulos said these discoveries can be used to create new anti-viral drugs and develop better vaccines that can be used to treat patients with influenza. This technology also can be used to improve medications for other viruses like hepatitis and polio.

The technology allows the researchers "to establish a comprehensive roadmap of human genes modulated during influenza virus infection to better understand these disease mechanisms and to identify novel targets for anti-influenza therapy," said Lauren Andersen, a UGA graduate student and co-author of the study.

Influenza is the world's leading cause of morbidity and mortality; seasonal viruses affect up to 15 percent of the human population and cause severe illness in 5 million people a year, according to the Centers for Disease Control and Prevention. In the U.S., financial losses caused by seasonal influenza are estimated to exceed $87 billion annually.


Story Source:

The above story is based on materials provided by University of Georgia. The original article was written by April Sorrow. Note: Materials may be edited for content and length.


Journal Reference:

  1. V. A. Meliopoulos, L. E. Andersen, K. F. Birrer, K. J. Simpson, J. W. Lowenthal, A. G. D. Bean, J. Stambas, C. R. Stewart, S. M. Tompkins, V. W. van Beusechem, I. Fraser, M. Mhlanga, S. Barichievy, Q. Smith, D. Leake, J. Karpilow, A. Buck, G. Jona, R. A. Tripp. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. The FASEB Journal, 2012; DOI: 10.1096/fj.11-193466

Cite This Page:

University of Georgia. "New information for flu fight: Researchers study RNA interference to determine host genes used by influenza for virus replication." ScienceDaily. ScienceDaily, 28 January 2012. <www.sciencedaily.com/releases/2012/01/120127162749.htm>.
University of Georgia. (2012, January 28). New information for flu fight: Researchers study RNA interference to determine host genes used by influenza for virus replication. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2012/01/120127162749.htm
University of Georgia. "New information for flu fight: Researchers study RNA interference to determine host genes used by influenza for virus replication." ScienceDaily. www.sciencedaily.com/releases/2012/01/120127162749.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins