Featured Research

from universities, journals, and other organizations

Genetic information migrates from plant to plant

Date:
February 1, 2012
Source:
Max Planck Institute of Molecular Plant Physiology
Summary:
To generate phylogenetic trees and investigate relationships between organisms, scientists usually look for similarities and differences in the DNA. Plant scientists were confounded by the fact that the DNA extracted from the plants’ green chloroplasts sometimes showed the greatest similarities when related species grew in the same area. Scientists have now discovered that a transfer of entire chloroplasts, or at least their genomes, can occur in contact zones between plants. Inter-species crossing is not necessary. The new chloroplast genome can even be handed down to the next generation and, thereby, give a plant with new traits. These findings are of great importance to the understanding of evolution as well as the breeding of new plant varieties.

A natural graft between a birch (left) and an oak (right). Sexually incompatible species can exchange chloroplast genomes at graft sites.
Credit: Image courtesy of Max Planck Institute of Molecular Plant Physiology

To generate phylogenetic trees and investigate relationships between organisms, scientists usually look for similarities and differences in the DNA. Plant scientists were confounded by the fact that the DNA extracted from the plants' green chloroplasts sometimes showed the greatest similarities when related species grew in the same area. They tried to explain the phenomenon with the assumption that every once in a while those normally sexually incompatible species crossed and produced offspring with a new combination of nuclear and chloroplast genomes.

They coined the term "chloroplast capture" to illustrate what they thought was happening. Now, scientists around Ralph Bock from the Max Planck Institute of Molecular Plant Physiology in Potsdam discovered that a transfer of entire chloroplasts, or at least their genomes, can occur in contact zones between plants. Inter-species crossing is not necessary. The new chloroplast genome can even be handed down to the next generation and, thereby, give a plant with new traits. These findings are of great importance to the understanding of evolution as well as the breeding of new plant varieties.

Many wooden plants, especially fruit and rose trees, are deliberately damaged by gardeners. They chop off branches or cut dents into the bark in order to put parts of another plant into the slots. The plant whose roots touch the soil is called stock, whereas scion is the technical term for the branch that is put onto it. The reason behind the gardener's atrocities is to reproduce varieties with an especially high yield without the Mendelian Laws messing with their business. According to Mendel, only parts of the progeny show the same traits as their parents. The rest of the offspring will most likely be less valuable. By putting one branch of a successful apple variety onto a new stock, the desired apple tree is easily cloned. But graft junctions do not always have to be human-made. Plants that simply grow in close vicinity to each other can fuse.

In those above mentioned contact zones, so called horizontal gene transfers (HGT), the transfer of genes without sexual reproduction, can occur. For a long time, scientists believed that HGT was restricted to prokaryotes, organisms without nuclei. It was universally accepted that, for example, bacteria can exchange genes that are crucial to their survival, like the ones that transmit a resistance to antibiotics. Nowadays it is increasingly appreciated that HGT is in fact not restricted to prokaryotes. It can be observed at the contact zone between different animal tissues after an organ transplantation or -- as shown here -- between two fusing plants. In 2009, Ralph Bock and Sandra Stegemann discovered that genetic information stored in the green chloroplasts can be transferred to another plant by means of horizontal gene transfer. Their results were, at that time, restricted to the transfer of genes between plants of the same species.

"The results from the DNA analyses were especially interesting," says Sandra Stegemann, first author of the paper. "We found a completely identical version of the chloroplast genome from N. tabacum in the two other species." When mitochondria, another cell organelle with an individual genome, are transferred across species barriers, the result is often a mixture of the donor and recipient DNA. "The new chloroplasts had kept their entire genetic information and fully ousted the old ones. They were even inherited by the next generation," Stegemann further explains.

Now scientists are trying to find the answer to the question of how exactly the chloroplasts leave their homes and find a new place to live. Do they migrate through the plasmodesmata, the narrow tunnels that connect neighboring plant cells? Or do enzymes locally remove the cell wall and allow small amounts of cytoplasm and cell organelles to pass from one cell to another? "As of now, we do not know how chloroplasts manage to get from one cell to the other," says group leader Ralph Bock. "But the decisive point is that it happens and the discovery of this process offers a new explanation for important evolutionary processes and opens up new possibilities for plant breeders." After all, the chloroplast DNA vitally contributes to the fitness of a plant and can provide crucial advantages.


Story Source:

The above story is based on materials provided by Max Planck Institute of Molecular Plant Physiology. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Stegemann, M. Keuthe, S. Greiner, R. Bock. Horizontal transfer of chloroplast genomes between plant species. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1114076109

Cite This Page:

Max Planck Institute of Molecular Plant Physiology. "Genetic information migrates from plant to plant." ScienceDaily. ScienceDaily, 1 February 2012. <www.sciencedaily.com/releases/2012/02/120201093100.htm>.
Max Planck Institute of Molecular Plant Physiology. (2012, February 1). Genetic information migrates from plant to plant. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/02/120201093100.htm
Max Planck Institute of Molecular Plant Physiology. "Genetic information migrates from plant to plant." ScienceDaily. www.sciencedaily.com/releases/2012/02/120201093100.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins