Featured Research

from universities, journals, and other organizations

SIV infection may lead to increase in immune-suppressive Treg cells

Date:
February 14, 2012
Source:
University of California - Davis Health System
Summary:
Tissue in monkeys infected with a close relative of HIV can ramp up production of a type of T cell that actually weakens the body's attack against the invading virus.

Tissue in monkeys infected with a close relative of HIV can ramp up production of a type of T cell that actually weakens the body's attack against the invading virus. The discovery, in lymph nodes draining the intestinal tract, could help explain how the HIV virus evades the body's immune defenses.

If the same pattern is found in people infected with HIV, the finding could lead to a treatment strategy that slows the production of this restraining type of T cell. This would let the immune soldiers go after the virus more aggressively.

The scientists don't know if the simian virus is directly causing the build-up of the inhibitory T cells, called regulatory T cells, but in any case, reducing regulatory T-cell production could boost the body's resistance to the evasive virus.

The research was a collaboration among scientists at the UC Davis School of Medicine, Cincinnati Children's Hospital and the California National Primate Center.

Regulatory T cells, or Tregs, normally tamp down immune-system attacks, presumably to prevent an over-active assault that can cause harmful inflammation or auto-immune disease. The scientists suspect that the high number of Treg cells in the infected primates might prevent their immune systems from mounting a full-on attack against the virus.

The researchers focused on immune cells called dendritic cells that interact with Tregs in preparation for their policing duty. This occurs in lymph nodes throughout the body's lymphatic system -- the part of the circulatory system that also drains many organs of fluids, fatty acids and other substances.

The study found that mature dendritic cells were particularly active in promoting Treg production, and that these promoters were in high concentration in nodes draining the intestine, or mucosa. The intestinal mucosa is the site of early infection and aggressive transmission for both the primate virus and HIV, making it the first line of defense against the invasion.

"The intestinal mucosa contains highly activated 'helper' T-cells that are prime targets for the HIV virus, so it is important to understand how the body fights HIV in this under-studied tissue," said Barbara Shacklett, associate professor of medical microbiology and immunology at the UC Davis School of Medicine.

"We consider the GI tract as a major 'battlefield' between the immune system and HIV. If we can better understand what happens there, we may finally learn how to eradicate the virus," said Shacklett.

Shacklett is a co-author of a paper on the research, entitled "Myeloid dendritic cells isolated from tissues of SIV-infected Rhesus macaques promote the induction of regulatory T cells," published Jan. 28 in the journal AIDS. Julia Shaw, a graduate student in Shacklett's lab, co-led the research with Pietro Presicce of the Cincinnati Children's Hospital Research Foundation.

An editorial in the same issue of AIDS highlights the new research and related studies that are clarifying the interaction between the simian version of HIV and the Treg cells that can control attacks against them.

Shacklett stressed that Tregs usually increase when the immune system is at risk of over-reacting. Their high numbers lead to a reduced immune attack, although the mechanism is not well understood.

But in persistent infections -- when a strong immune response is called for -- Tregs should decrease in number, taking a "hands-off" approach and freeing the immune army to advance. HIV may sabotage this control by prompting increased Treg production as if the body need not rally its defenses against the virus.

The research draws on earlier research by Shacklett, Shaw and colleagues comparing Treg counts in rectal mucosa of people with high and low HIV viral load. They showed that high viral load was associated with increased frequencies of immunosuppressive Treg in the gastrointestinal mucosa, suggesting these Tregs might be thwarting the body's immune defenses.

Other coauthors on the new research paper are Claire Chougnet, an associate professor of molecular immunology at University of Cincinnati College of Medicine, and Christopher Miller of the California National Primate Research Center.

The research was supported in part by the California National Primate Research Center's Pilot Project award funded by BaseGrant NCRR-RR-000169 and the National Institutes of Health grants AI8227, AI068524 and AI057020.


Story Source:

The above story is based on materials provided by University of California - Davis Health System. Note: Materials may be edited for content and length.


Journal References:

  1. Pietro Presicce, Julia M. Shaw, Christopher J. Miller, Barbara L. Shacklett, Claire A. Chougnet. Myeloid dendritic cells isolated from tissues of SIV-infected Rhesus macaques promote the induction of regulatory T cells. AIDS, 2012; 26 (3): 263 DOI: 10.1097/QAD.0b013e32834ed8df
  2. Martyn French, Audrey Kinter. Regulatory T cells are converts in simian immunodeficiency virus infection. AIDS, 2012; 26 (3): 395 DOI: 10.1097/QAD.0b013e32834ee778

Cite This Page:

University of California - Davis Health System. "SIV infection may lead to increase in immune-suppressive Treg cells." ScienceDaily. ScienceDaily, 14 February 2012. <www.sciencedaily.com/releases/2012/02/120214134944.htm>.
University of California - Davis Health System. (2012, February 14). SIV infection may lead to increase in immune-suppressive Treg cells. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2012/02/120214134944.htm
University of California - Davis Health System. "SIV infection may lead to increase in immune-suppressive Treg cells." ScienceDaily. www.sciencedaily.com/releases/2012/02/120214134944.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins