Featured Research

from universities, journals, and other organizations

Proteins in Yellowstone bacteria considered for biofuel inspiration

Date:
February 14, 2012
Source:
DOE/Oak Ridge National Laboratory
Summary:
Studies of bacteria first found in Yellowstone's hot springs are furthering efforts toward commercially viable ethanol production from crops such as switchgrass.

ORNL researchers studied how the proteins of a bacterium named C. obsidiansis responded to different carbon sources. The microorganism (pictured growing on crystalline cellulose) could play a role in the development of a cheaper biofuel production process.
Credit: Jennifer Morrell-Falvey/ORNL

Studies of bacteria first found in Yellowstone's hot springs are furthering efforts at the Department of Energy's BioEnergy Science Center toward commercially viable ethanol production from crops such as switchgrass.

The current production of ethanol relies on the use of expensive enzymes that break down complex plant materials to yield sugars that are fermented into ethanol. One suggested cheaper alternative is consolidated bioprocessing, a streamlined process that uses microorganisms to break down the resistant biomass.

"Consolidated bioprocessing is like a one-pot mix," said Oak Ridge National Laboratory's Richard Giannone, coauthor on a BESC proteomics study that looked at one microorganism candidate. "You want to throw plant material into a pot with the microorganism and allow it to degrade the material and produce ethanol at the same time."

The BESC study focused on Caldicellulosiruptor obsidiansis, a naturally occurring bacterium discovered by BESC scientists in a Yellowstone National Park hot spring. The microorganism, which thrives at extremely high temperatures, breaks down organic material such as sticks and leaves in its natural environment, and scientists hope to transfer this capability to biofuel production tanks.

In a paper featured on the cover of the Journal of Proteome Research, the BESC team conducted a comparative analysis of proteins from C. obsidiansis grown on four different carbon sources, ranging from a simple sugar to more complex substrates such as pure cellulose and finally to switchgrass. The succession of carbon substrates allowed researchers to compare how the organism processes increasingly complex materials.

"This progression helps us look at how proteins change given different carbon substrates," Giannone said. "One of the goals is to identify new proteins that we haven't seen before. If an unknown protein doesn't show up on the simple sugars or cellulose, but it shows up on the switchgrass, then we can say something about that gene or protein -- that it responds to something the switchgrass is providing."

The researchers found that growth on switchgrass prompted the organism to express an expanded set of proteins that deal specifically with the hemicellulose content of the plant, including hemicellulose-targeted glycosidases and extracellular solute-binding proteins. Acting together, these two sub-systems work to break down the plant material and import the resulting sugars into the cell. The scientists went on to show that once inside the cell, the organism "switches on" certain enzymes involved in pentose metabolism in order to further process these hemicellulose-derived sugars into usable energy.

"By comparing how C. obsidiansis reacted to switchgrass, relative to pure cellulose, we were able to pinpoint the specific proteins and enzymes that are important to plant cell wall deconstruction -- a major roadblock to the production of advanced biofuels," Giannone said.

The team's measurement of the full complement and abundance of C. obsidiansis proteins, called proteomics, can now be combined with other technologies such as genomics, transcriptomics and metabolomics in order to obtain a 360-degree, system-wide view of the organism. Instead of studying discrete proteins, these systems biology-type approaches provide more thorough insight into the day-to-day operations of bioenergy-relevant organisms and thus better equip researchers to make recommendations about their use in ethanol production.

"One goal for us at the BioEnergy Science Center is to take these 'omic' technologies and integrate the data so we can draw definitive conclusions about a system," Giannone said.

Coauthors on the paper are Hamburg University of Technology's Adriane Lochner and Garabed Antranikian, and ORNL's Martin Keller, David Graham and Robert Hettich.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Adriane Lochner, Richard J. Giannone, Martin Keller, Garabed Antranikian, David E. Graham, Robert L. Hettich. Label-free Quantitative Proteomics for the Extremely Thermophilic BacteriumCaldicellulosiruptor obsidiansisReveal Distinct Abundance Patterns upon Growth on Cellobiose, Crystalline Cellulose, and Switchgrass. Journal of Proteome Research, 2011; 111108140113005 DOI: 10.1021/pr200536j

Cite This Page:

DOE/Oak Ridge National Laboratory. "Proteins in Yellowstone bacteria considered for biofuel inspiration." ScienceDaily. ScienceDaily, 14 February 2012. <www.sciencedaily.com/releases/2012/02/120214145335.htm>.
DOE/Oak Ridge National Laboratory. (2012, February 14). Proteins in Yellowstone bacteria considered for biofuel inspiration. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2012/02/120214145335.htm
DOE/Oak Ridge National Laboratory. "Proteins in Yellowstone bacteria considered for biofuel inspiration." ScienceDaily. www.sciencedaily.com/releases/2012/02/120214145335.htm (accessed September 2, 2014).

Share This




More Matter & Energy News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Teases India Event, Possible Android One Reveal

Google Teases India Event, Possible Android One Reveal

Newsy (Sep. 1, 2014) Google has announced a Sept. 15 event in India during which they're expected to reveal their Android One phones. Video provided by Newsy
Powered by NewsLook.com
Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins