Science News

... from universities, journals, and other research organizations

New Way to Tap Largest Remaining Treasure Trove of Potential New Antibiotics

Feb. 22, 2012 — Scientists are reporting use of a new technology for sifting through the world's largest remaining pool of potential antibiotics to discover two new antibiotics that work against deadly resistant microbes, including the "super bugs" known as MRSA.


Share This:

Their report appears in the Journal of the American Chemical Society.

Sean Brady and colleagues explain that an urgent need exists for new medications to cope with microbes that shrug off the most powerful traditional antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) infections, for instance, are resistant to most known antibiotics. MRSA strikes at least 280,000 people in the U.S. alone every year, and almost 20,000 of those patients die. The typical way of discovering new antibiotics involves identifying and growing new bacteria from soil and other environmental samples in culture dishes in the laboratory. That environmental treasure-trove is the largest remaining potential source of new antibiotics. Researchers then analyze the bacteria to see if they make substances that could be used as antibiotics to kill other microbes. But most bacteria found in nature can't grow in the laboratory. That's why Brady and colleagues took a new approach to this problem.

The researchers removed DNA from soil bacteria that wouldn't grow in the lab. Then, they put this DNA into different bacteria that do grow well in culture dishes, and these bacteria acted like incubators for the new DNA. The approach enabled Brady's team to study the substances made by the soil bacteria's DNA in the lab. With this "metagenomics" method, they identified two new possible antibiotics called fasamycin A and fasamycin B that killed MRSA and vancomycin-resistant Enterococcus faecalis, which also is becoming more resistant to known antibiotics. They also determined how the new antibiotics work. "Metagenomics has the potential to access large numbers of previously inaccessible natural antibiotics," say the researchers.

The researchers acknowledge funding from the National Institutes of Health and the Howard Hughes Medical Institute.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by American Chemical Society.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Zhiyang Feng, Debjani Chakraborty, Scott B. Dewell, Boojala Vijay B. Reddy, Sean F. Brady. Environmental DNA-Encoded Antibiotics Fasamycins A and B Inhibit FabF in Type II Fatty Acid Biosynthesis. Journal of the American Chemical Society, 2012; 134 (6): 2981 DOI: 10.1021/ja207662w
APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,690

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Bacteria As Art

Biophysicists are growing Petri dishes of different species of bacteria in order to develop new antibiotics. The bacteria are subjected to different. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?