Featured Research

from universities, journals, and other organizations

Blue light culprit in red tide blooms

Date:
February 23, 2012
Source:
Biophysical Society
Summary:
Researchers have uncovered the specific mechanism that triggers phytoplankton to release their powerful toxins into the environment.

Each year, phytoplankton blooms known as "red tides" kill millions of fish and other marine organisms and blanket vast areas of coastal water around the world. Though the precise causes of red tides remain a mystery, a team of researchers in the United States and Spain has solved one of the main riddles about these ecological disasters by uncovering the specific mechanism that triggers phytoplankton to release their powerful toxins into the environment.

"Previous theories about how phytoplankton release toxins proposed a rather awkward, untested 'exudation' mechanism," said researcher Pedro Verdugo of the University of Washington in Friday Harbor. "The true mechanism has been a very exciting riddle to crack and it provides a handle on understanding the development of huge phytoplankton blooms, eventually affecting several square miles of the ocean's upper surface."

Verdugo and his colleagues, Kellie L. Vigna also of the University of Washington and Ivan Quesada of the Universidad Miguel Hernandez in Alicante, Spain, will present their research at the 56th Annual Meeting of the Biophysical Society (BPS), held Feb. 25-29 in San Diego, Calif.

Red tides appear when naturally occurring algae -- including Karenia brevis -- multiply very rapidly, becoming so concentrated that the ocean surface takes on a reddish hue. Karenia produces brevetoxin, a powerful neurotoxin that binds to nerve and muscle cells, leading to substantial marine life mortality and human morbidity. The blooms are triggered by some as yet unknown fluctuations in ocean temperature, salinity, and available nutrients.

The researchers discovered that Karenia and other unicellular microalgae function very much like the secretory cells we have in our bodies. Namely, they store inside membrane-lined microscopic vesicles their active chemicals -- such as hormones, antibacterial products, and, in Karenia's case, toxins. When properly stimulated, these cells release their cargo by a process known as exocytosis.

Secretory cells store high concentrations of active chemicals in their vesicles by "caging" them in a gel matrix, as Verdugo's lab discovered more than a decade ago. This trick offers a clever thermodynamic advantage as storage across membrane-lined vesicles would otherwise require large amounts of osmotic work. According to the researchers, these microscopic gels found inside virtually all secretory vesicles remain in a condensed gel phase -- with their cargo virtually immobilized -- until they are released from the cell, when they undergo drastic swelling and release their payload. "Swelling results from a polymer gel phase transition, a characteristic property of both natural and synthetic polymer gels, which has been further applied in our lab to engineer high payload drug delivery vesicles," said Verdugo.

The cargo in phytoplankton vesicles are toxins. They are caged in a gel matrix made up of a biopolymer very similar to alginate, one of the constituents of algae cell walls. The researchers discovered that phytoplankton release their toxin-loaded gels when exposed to sunlight, particularly the blue portion of the spectrum.

"We do not know why phytoplankton respond to blue light, but it might be associated with the fact that blue light penetrates deeper in seawater," said Verdugo. "Often, plants and animals release toxins as a defense mechanism. Whether this is the case in phytoplankton remains speculative. However, blue light stimulation implies that these cells must have a photoreceptor -- most likely associated with the cell structures known as chloroplasts, which are responsible for photosynthesis. This is in fact one of the riddles we'll tackle next."

These observations support the notion that Karenia brevis functions as a typical secretory cell, which the researchers believe opens the way to a better understanding of red tide bloom dynamics.


Story Source:

The above story is based on materials provided by Biophysical Society. Note: Materials may be edited for content and length.


Cite This Page:

Biophysical Society. "Blue light culprit in red tide blooms." ScienceDaily. ScienceDaily, 23 February 2012. <www.sciencedaily.com/releases/2012/02/120223103452.htm>.
Biophysical Society. (2012, February 23). Blue light culprit in red tide blooms. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2012/02/120223103452.htm
Biophysical Society. "Blue light culprit in red tide blooms." ScienceDaily. www.sciencedaily.com/releases/2012/02/120223103452.htm (accessed August 27, 2014).

Share This




More Plants & Animals News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Firefighters Rescue Puppy Stuck in Tire

Raw: Firefighters Rescue Puppy Stuck in Tire

AP (Aug. 26, 2014) It took Houston firefighters more than an hour to free a puppy who got its head stuck in a tire. (Aug. 26) Video provided by AP
Powered by NewsLook.com
Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Newsy (Aug. 26, 2014) A study published in the journal "Neurology" interviewed more than 19,000 people and found 15 percent suffer from being "sleep drunk." Video provided by Newsy
Powered by NewsLook.com
Great White Shark Spotted Off Massachusetts Coast

Great White Shark Spotted Off Massachusetts Coast

Reuters - US Online Video (Aug. 26, 2014) A great white shark is spotted off the shore at Duxbury beach in Massachusetts forcing beach goers out of the water. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Elk Wanders Into German Office Building

Raw: Elk Wanders Into German Office Building

AP (Aug. 25, 2014) A young bull elk wandered inside the office building of a company in Dresden, Germany on Monday. The elk became trapped between a wall and glass windows while rescue workers tried to rescue him safely. (Aug. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins