Featured Research

from universities, journals, and other organizations

Skin infection sheds light on immune cells living in our skin

Date:
February 29, 2012
Source:
Brigham and Women's Hospital
Summary:
Very recently, researchers discovered an important population of immune cells called memory T cells living in parts of the body that are in contact with the environment (e.g., skin, lung, GI tract). How these "resident" memory T cells are generated was unknown, and their importance with regard to how our immune system remembers infection and how it prevents against re-infection is being studied intensively. A new study has used a vaccinia virus infection to answer important questions about how these newly discovered cells protect us.

Very recently, researchers discovered an important population of immune cells called memory T cells living in parts of the body that are in contact with the environment (e.g., skin, lung, GI tract). How these "resident" memory T cells are generated was unknown, and their importance with regard to how our immune system remembers infection and how it prevents against re-infection is being studied intensively.

Now, a study by a Brigham and Women's Hospital (BWH) research team led by Xiaodong Jiang, PhD, research scientist and Thomas S. Kupper, MD, Chair of the BWH Department of Dermatology, and the Thomas B. Fitzpatrick Professor of Dermatology at Harvard, has used a model involving a vaccinia virus infection of the skin to answer important questions about how these newly discovered cells protect us.

The study will be electronically published on February 29, 2012 in Nature.

Jiang and Kupper used skin infection with vaccinia virus to study the relative roles of central memory T cells (T cells that circulate in the bloodstream) and resident memory T cells in protective immunity. What they found was that after infection, disease-specific T cells were rapidly recruited not only to the infected site, but also to all areas of skin.

They further showed that multiple additional infections at future time points led to an accumulation of even more of these resident memory T cells in the skin, and that these cells remained in the skin for long periods of time.

Finally, Jiang and Kupper showed, for the first time, that resident memory T cells were the most important protective immune cells in fighting infection-much more important than central memory T cells, which were ineffective at rapid immune protection by themselves.

"Finding that resident memory T cells were so much more important than central memory T cells in protective immunity was surprising, and makes us re-think current immunologic dogma," said Kupper.

While skin was used as a model system in this study, the results can be extrapolated to the lungs, GI tract, and other epithelial tissues that contact the outside world.

The findings suggest that the most important elements of T cell memory to infectious diseases may reside in tissues, rather than in the blood.

"The immune system provides the right T cells, at the right place and time, to protect us from an environment that is full of potentially harmful pathogens." said Kupper.

Also, the findings imply that vaccines should be optimized to create precisely this kind of long lasting tissue-resident T cell immunity, and that the current focus on antibody production may not be as important.

"This work suggests a fundamental reassessment of how vaccines are both constructed and delivered," said Kupper. "These results have altered the way we think about the immune system and vaccination for infectious diseases."

This research was supported by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by Brigham and Women's Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiaodong Jiang, Rachael A. Clark, Luzheng Liu, Amy J. Wagers, Robert C. Fuhlbrigge, Thomas S. Kupper. Skin infection generates non-migratory memory CD8 TRM cells providing global skin immunity. Nature, 2012; DOI: 10.1038/nature10851

Cite This Page:

Brigham and Women's Hospital. "Skin infection sheds light on immune cells living in our skin." ScienceDaily. ScienceDaily, 29 February 2012. <www.sciencedaily.com/releases/2012/02/120229142136.htm>.
Brigham and Women's Hospital. (2012, February 29). Skin infection sheds light on immune cells living in our skin. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/02/120229142136.htm
Brigham and Women's Hospital. "Skin infection sheds light on immune cells living in our skin." ScienceDaily. www.sciencedaily.com/releases/2012/02/120229142136.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins