Featured Research

from universities, journals, and other organizations

In forests, past disturbances obscure warming impacts

Date:
March 5, 2012
Source:
Cary Institute of Ecosystem Studies
Summary:
Past disturbances, such as logging, can obscure the effects of climate change on forest ecosystems. So reports a new study. The article, exploring nitrogen dynamics, found that untangling climate impacts from other factors can be difficult, even when scientists have access to decades of data on a forest's environmental conditions.

Image of a weir used to monitor stream flow patterns in the Hubbard Brook Experimental Forest.
Credit: Cary Institute Photo Archive.

Past disturbances, such as logging, can obscure the effects of climate change on forest ecosystems. So reports a study just published in the Proceedings of the National Academy of Sciences. The paper, exploring nitrogen dynamics, found that untangling climate impacts from other factors can be difficult, even when scientists have access to decades of data on a forest's environmental conditions.

Co-author Dr. Gene E. Likens of the Cary Institute comments, "Understanding how climate change is shaping forests is critical. Our paper underscores the complexity of forest ecosystems, the legacy left by disturbance, and the difficulty in isolating climate impacts from the legacies of past disturbances."

The Hubbard Brook Experimental Forest, located in the White Mountains of New Hampshire, is home to the longest, most complete record of watershed-ecosystem dynamics in the world. Its study sites have been measuring the environmental pulse of the forest for nearly half a century.

Because nitrogen is essential to plant growth and a potential pollutant in water, Hubbard Brook scientists have paid close attention to nitrate draining from the watershed. Their long-term records show that nitrate concentrations in streams are at a 46-year low, and ecosystem-wide loss of nitrate from the watershed has decreased by 90%.

The paper's authors, including two scientists from the Cary Institute and several from Princeton University, sought to reveal what was driving this shift in nitrogen dynamics. Among the variables explored were reductions in airborne nitrogen pollution, climate change (species shifts, warming soils, a longer growing season, and snowmelt changes) and landscape-level disturbance (logging, hurricanes).

A decline in airborne nitrogen pollution was not found, and the replacement of ~25% of the forest's sugar maples with American beech, a slow-decomposing species, accounted for only a modest reduction in nitrate export. Most surprisingly, despite five decades of warming, the authors did not find that a longer growing season resulted in increased vegetation growth and subsequent nitrogen demand.

They did identify a relationship between warmer winters, a decline in large snowmelt events, and a decrease in nitrate export. When nitrate has time to linger in the soil, it can be taken up by plants and microbes. And increases in soil temperature, combined with a shift in soil water flow patterns, explained about 40% of the nitrate decline.

But historical disturbance -- not climate change -- was the driving factor behind the shift in nitrogen dynamics seen at Hubbard Brook. Using hundreds of modeling scenarios, the authors found that 50-60% of the decrease in nitrogen export could be explained by extensive timbering that occurred in the White Mountains in the early twentieth century. Logging activity had a large influence on the amount of nitrogen in soils that persisted for decades.

The counterintuitive finding that nitrate export dropped when forest growth was decelerating underscores the legacy that landscape-scale disturbances leave on the forest nitrogen cycle. First author Susana Bernal of Princeton University comments, "Recognizing how present-day concerns such as climate change interact with historical patterns in ecosystems marks a major challenge in gauging the health of the planet."

With Likens concluding, "As far as the forest nitrogen cycle is concerned, we can't assess climate impacts, or determine accurate baselines for predictive models, without accounting for past disturbances."

This study was supported by a Fulbright Postdoctoral Scholarship from the Spanish Ministry of Science and lnnovation, the National Oceanic and Atmospheric Administration, the National Science Foundation, and the A. W. Mellon Foundation.

Authors included: Susana Bernal (Princeton University, Center for Advanced Studies of Blanes CEAB-CSIC, Spain), Lars O. Hedin (Princeton University), Gene E. Likens (Cary Institute of Ecosystem Studies), Stefan Gerber (Princeton University, University of Florida), and Don C. Buso (Cary Institute of Ecosystem Studies).


Story Source:

The above story is based on materials provided by Cary Institute of Ecosystem Studies. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Bernal, L. O. Hedin, G. E. Likens, S. Gerber, D. C. Buso. Complex response of the forest nitrogen cycle to climate change. Proceedings of the National Academy of Sciences, 2012; 109 (9): 3406 DOI: 10.1073/pnas.1121448109

Cite This Page:

Cary Institute of Ecosystem Studies. "In forests, past disturbances obscure warming impacts." ScienceDaily. ScienceDaily, 5 March 2012. <www.sciencedaily.com/releases/2012/03/120305103031.htm>.
Cary Institute of Ecosystem Studies. (2012, March 5). In forests, past disturbances obscure warming impacts. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2012/03/120305103031.htm
Cary Institute of Ecosystem Studies. "In forests, past disturbances obscure warming impacts." ScienceDaily. www.sciencedaily.com/releases/2012/03/120305103031.htm (accessed July 22, 2014).

Share This




More Plants & Animals News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
A Centuries' Old British Tradition Is Far from a Swan Song

A Centuries' Old British Tradition Is Far from a Swan Song

AFP (July 19, 2014) As if it weren't enough that the Queen is the Sovereign of the UK and 15 other Commonwealth realms, she is also the owner of all Britain's unmarked swans. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins