Featured Research

from universities, journals, and other organizations

Environmentally friendly cleaning and washing

Date:
March 9, 2012
Source:
Fraunhofer-Gesellschaft
Summary:
More and more everyday products are based on renewable resources, with household cleaners now containing active cleaning substances made from plant oils and sugar. These fat and dirt removers are especially environmentally friendly and effective when produced using biotechnology, with the aid of fungi and bacteria.

The researcher takes samples from the bioreactor.
Credit: Fraunhofer IGB/Frank Kleinbach

More and more everyday products are based on renewable resources, with household cleaners now containing active cleaning substances (surfactants) made from plant oils and sugar. These fat and dirt removers are especially environmentally friendly and effective when produced using biotechnology, with the aid of fungi and bacteria.

Detergents are everywhere -- in washing powders, dishwashing liquids, household cleaners, skin creams, shower gels, and shampoos. It is the detergent that loosens dirt and fat, makes hair-washing products foam up and allows creams to be absorbed quickly. Up until now, most detergents are manufactured from crude oil -- a fossil fuel of which there is only a limited supply. In their search for alternatives, producers are turning increasingly to detergents made from sustainable resources, albeit that these surfactants are usually chemically produced. The problem is that the substances produced via such chemical processes are only suitable for a small number of applications, since they display only limited structural diversity -- which is to say that their molecular structure is not very complex. Now researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB are taking a different approach: they are manufacturing surfactants using biotechnological methods, with the assistance of fungi and bacteria.

"We produce biosurfactants microbially, based on sustainable resources such as sugar and plant oil," says Suzanne Zibek, a technical biologist and engineer at the IGB in Stuttgart. The scientist and her team use cellobiose lipids (CL) and mannosylerythritol lipids (MEL) because testing has shown these to be promising for industrial application. They are produced in large quantities by certain types of smut fungus, of the kind that can affect corn plants. What is more, CL also has antibacterial properties.

What marks biological surfactants out from their synthetic competitors is their increased structural diversity. In addition, they are biodegradable, are less toxic and are just as good at loosening fats. But despite all this, to date they are used in only a few household products and cosmetics. The reason is that they are costly and difficult to produce, with low yields. One substance that has been successfully brought to market is the sophorose lipid made by Candida bombicola, which is used by a number of manufacturers as an additive in household cleaning products. This biosurfactant is produced by a yeast that is harvested from bumble-bee nectar.

"If we want natural surfactants to conquer the mass market, we need to increase fermentation yields," says Zibek. To this end, the scientists are optimizing the production process in order to bring down manufacturing costs. They cultivate the microorganisms in a bioreactor, where they grow in a continuously stirred culture medium containing sugar, oil, vitamins and minerals salts. The goal is to achieve high concentrations in as short a time as possible, so they need to encourage as many microorganisms as possible to grow. There are numerous factors with a bearing on the outcome, including the oxygen supply, the pH value, the condition of the cells, and the temperature. The composition of the culture medium itself is also crucial. It is not just a question of how much sugar and oil go into the mix, but also the speed at which they are added. "We have already achieved concentrations of 16 grams per liter for CL and as high as 100 grams per liter for MEL -- with a high production rate, too," the group manager is happy to report.

The next step is to separate the biosurfactants from the fermentation medium and to characterize them with the help of industrial partners, determining which surfactants are suitable for use in dishwashing liquids, which are more suited to oven cleaning products, and which are ideal for use in cosmetics. The substances can finally be modified or improved at the enzymatic level. "For instance, we managed to increase wa-ter solubility. After all, the biosurfactant shouldn't form an oily film over the surface of the dishwashing liquid," explains Zibek. The experts have even managed to produce biological surfactants using waste products, by obtaining the sugar needed for the culture medium from straw.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Environmentally friendly cleaning and washing." ScienceDaily. ScienceDaily, 9 March 2012. <www.sciencedaily.com/releases/2012/03/120309104841.htm>.
Fraunhofer-Gesellschaft. (2012, March 9). Environmentally friendly cleaning and washing. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2012/03/120309104841.htm
Fraunhofer-Gesellschaft. "Environmentally friendly cleaning and washing." ScienceDaily. www.sciencedaily.com/releases/2012/03/120309104841.htm (accessed August 27, 2014).

Share This




More Earth & Climate News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com
Calif. Quake Underscores Need for Early Warning

Calif. Quake Underscores Need for Early Warning

AP (Aug. 26, 2014) Researchers at UC Berkeley are testing a prototype of an earthquake early warning system that California is pursuing years after places like Mexico and Japan already have them up and running. (August 26) Video provided by AP
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

AFP (Aug. 25, 2014) A factory in the industrial state of Sao Paulo produces genetically modified mosquitoes to fight dengue, a deadly tropical disease more prevalent in Brazil than anywhere else in the world. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins