Featured Research

from universities, journals, and other organizations

How electrons outrun vibrating nuclei -- the X-ray movie

Date:
March 20, 2012
Source:
Forschungsverbund Berlin e.V. (FVB)
Summary:
Researchers have resolved spatial oscillations of electrons in a crystal by taking a real-time ‘movie’ with ultrashort x-ray flashes. Outer electrons move forth and back over the length of a chemical bond and modulate the electric properties while the tiny elongation of the inner electrons and the atomic nuclei is less than 1 % of this distance.

A) Unit cell of the KDP crystal [yellow spheres: phosporous atoms (P), pink: potassium (K), red: oxygen (O), white: hydrogen (H)]. (B) Electron density map before laser excitation in the plane defined by the rectangle in (A). The black lines indicate boxes enclosing the different atoms which are used to measure the charge and center of gravity of atoms. (C) and (D) Transient change of the electron density distribution in the plane defined in (A): red means increase and blue decrease. (E) Positions of atoms in the plane together with a schematic view of the main features emerging from the measurements: charge transfer from phosphorous atom to the oxygen atoms and the prolate-oblate deformation of the charge around the potassium atom.
Credit: Image courtesy of Forschungsverbund Berlin e.V. (FVB)

Researchers at the Max-Born-Institute, Berlin, Germany, resolved spatial oscillations of electrons in a crystal by taking a real-time 'movie' with ultrashort x-ray flashes. Outer electrons move forth and back over the length of a chemical bond and modulate the electric properties while the tiny elongation of the inner electrons and the atomic nuclei is less than 1% of this distance.

A crystal represents a regular array of atoms in space, a so-called lattice, which is held together by interactions between the electron clouds of neighboring atoms. While most electrons are tightly bound to the positively charged nuclei, the outermost valence electrons form chemical bonds to the next neighbors. Such bonds determine the distance between atoms in the crystal as well as basic properties such as mechanical stability or the electrical behavior.

In the crystal lattice, atoms are not at rest but perform vibrational motions around their equilibrium positions. The spatial elongation of the vibrating nuclei together with their core electrons is a tiny fraction -- typically less than 1 percent -- of the distance between neighboring atoms. With respect to the outer valence electrons, the situation is much less clear and their elongations have remained unknown in many cases. Measuring the motions of valence electrons in space and time is important for understanding their fundamental role for the crystal's static and dynamic electric properties.

To address this issue, Flavio Zamponi, Philip Rothhardt, Johannes Stingl, Michael Woerner, and Thomas Elsaesser built an x-ray "reaction microscope" which allows for an in situ imaging of moving electrons and atoms in crystalline materials. As they report in PNAS (doi/10.1073/pnas.1108206109) vibrations in the ionic crystal potassium dihydrogen phosphate (KDP) are kicked off by excitation with an optical pulse of 50 femtosecond duration (1 fs = 10-15 seconds). The momentary position of atoms and electrons is measured with high spatial resolution by 100 fs hard x-ray pulses which are diffracted from the vibrating atoms. Measuring simultaneously many different x-ray diffraction peaks allows for reconstructing the momentary distances of atoms and in turn the three-dimensional distribution of electrons within the crystal. Taking x-ray snap shots at various delay times after initiating the vibrations creates a molecular movie according to the well known stroboscope effect.

It was a big surprise for the researchers that for a special kind of lattice vibrations (the so called soft mode of KDP) the involved valence electrons move a 30 times larger distance than the involved atoms (i.e. nuclei plus core electrons) when performing their oscillatory motion. Such a scenario is sketched in the electron density maps shown in Fig. 1. During the soft mode oscillation an electron initially residing on the phosphorus (P) atom moves to one of the neighboring oxygen (O) atoms (P-O bond length: 160 picometers (10-12 m)) and returns to the P-atom after half the oscillation period. However, when measuring the positions of the involved atoms one finds that the latter move just a few picometers. This is very surprising, because according to textbook knowledge one expects the same motion as that of the nucleus for all electrons of an atom. To understand this unexpected large-amplitude motion of valence electrons, one has to consider the electric forces the oscillating ionic lattice exerts on the electrons during the soft mode vibration. Theories developed in the 1960's predicted such a behaviour which is now experimentally proven for the first time and determines the ultrahigh-frequency electric behavior of the material. In the attached movie, we show the iso-electron density surface of the phosphate ion during the soft mode oscillation in a KDP crystal.

The femtosecond x-ray powder diffraction method demonstrated here can be applied to many other systems in order to map ultrafast structure changes in physical and chemical processes.

Movie: http://www.fv-berlin.de/news/videos/x-ray-movie/view


Story Source:

The above story is based on materials provided by Forschungsverbund Berlin e.V. (FVB). Note: Materials may be edited for content and length.


Journal Reference:

  1. F. Zamponi, P. Rothhardt, J. Stingl, M. Woerner, T. Elsaesser. Ultrafast large-amplitude relocation of electronic charge in ionic crystals. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1108206109

Cite This Page:

Forschungsverbund Berlin e.V. (FVB). "How electrons outrun vibrating nuclei -- the X-ray movie." ScienceDaily. ScienceDaily, 20 March 2012. <www.sciencedaily.com/releases/2012/03/120320115144.htm>.
Forschungsverbund Berlin e.V. (FVB). (2012, March 20). How electrons outrun vibrating nuclei -- the X-ray movie. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/03/120320115144.htm
Forschungsverbund Berlin e.V. (FVB). "How electrons outrun vibrating nuclei -- the X-ray movie." ScienceDaily. www.sciencedaily.com/releases/2012/03/120320115144.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins