Featured Research

from universities, journals, and other organizations

MicroRNAs offer new hope against obesity and diabetes

Date:
March 29, 2012
Source:
Österreichisches Genomforschungsprogramm GEN-AU
Summary:
Hunger has always threatened humankind. This makes it unsurprising that human bodies attempt to store all surplus nourishment in adipose tissue. In developed countries, this life-saving craving is turning into a problem and obesity -- adiposity -- is turning into a danger. Why, though, does excess fat the body ill? How does fat trigger diabetes? And can these superfluous fat reserves be turned into warmth and just as well burnt? Scientists have now discovered that microRNAs could be a new switch of adipose cell development in humans.

Fat-cells with red coloured fat-drops.
Credit: Image courtesy of Österreichisches Genomforschungsprogramm GEN-AU

Hunger has always threatened humankind. This makes it unsurprising that human bodies attempt to store all surplus nourishment in adipose tissue. In developed countries, this life-saving craving is turning into a problem and obesity -- adiposity -- is turning into a danger. Why, though, does excess fat the body ill? How does fat trigger diabetes? And can these superfluous fat reserves be turned into warmth and just as well burnt?

Marcel Scheideler from the Technical University of Graz has examined these questions intensively in a particular project of the Austrian genomic research programme GEN-AU; and he discovered that microRNAs are a part of the solution. It has been known for a while that these molecules, which are produced by the human body, play an important role in gene regulation and thus contribute to cancer genesis. Indeed, this is a research area to which Scheideler has already made valuable contributions as part of an interdisciplinary research team (1). The fact that microRNAs could also contribute to obesity and diabetes, however, is a new insight, to which Scheideler and his team have contributed significantly recently (2-4). The topic of RNA and adiposity thus played an important role at the current conference "9 Years of the GEN-AU Programme" in Innsbruck. The participating research teams were managed by the local Innsbruck company CEMIT.

Too much fat makes people diabetic as well as overweight

"Fatty acids that circulate freely in the blood stream are toxic. Thus, white adipose tissue is specialized at capturing fats from the blood stream and storing them," explained Scheideler. "However, if adipose tissue reaches capacity, chronic inflammatory reactions in this tissue are incurred and the free fatty acids must be taken on by other organs. These are then damaged, which leads to subsequent conditions such as type-2-diabetes. One possible way of fighting diabetes is thus to sustain the capacity of adipose tissue to store fatty acids."

The discovery of "good" and "bad" microRNA

MicroRNA can inhibit the construction of proteins by blocking the building instructions, namely messenger RNA (mRNA). MicroRNA attaches itself to particular positions on the mRNA and thus prevents its translation into proteins. The order to construct proteins is thus not carried out; the amount of proteins in the cell decreases. Michael Karbiener from Scheideler's team discovered the first microRNA to hamper adipose cells production (2).

MicroRNA-27b blocks the building instructions of the protein PPARgamma. PPARgamma has been known for a while to increase the capacity of adipose tissue to absorb fatty acids. Consequently, there are already diabetes drugs on the market that work by activating this protein. However they do not help all relevant patients and, furthermore, they are riddled with side effects. The research conducted by the researchers from Graz offers a possible explanation for this: the way that Micro RNA-27b inhibits PPARGamma might be responsible for these shortcomings and, furthermore, an inhibition of microRNA-27b in turn might unfold the effects of the drug at low doses without side effects.

After all, it has already been observed that microRNA-27b is produced in elevated quantities in adipose tissue of diabetic rats -- a further clue for this connection between microRNA and diabetes. Above all, however, the effect of microRNA-27b on PPARgamma that the scientists from Graz have discovered seems to be another piece of the jigsaw in explaining the development of diabetes itself and in finding new avenues in fighting said disease. At the end of 2011 Scheideler's team discovered a further type of microRNA of opposite effect. MicroRNA-30c supports the production of adipose cells by simultaneously blocking two different proteins (3). One of these proteins is known for its influence on the development of diabetes. A pharmacological regulation of both microRNAs discovered by the researchers from Graz could thus further therapies for diabetes as well as adiposity.

Fat metabolism in brown fat -- new hope in fighting adiposity

Not very many years ago it was discovered that adults (as well as just infants) possess brown fat tissue, which the body uses to produce heat. If it were possible to transform parts of "normal" white adipose tissue into brown tissue and to activate it, excess fat deposits could practically be burnt off -- a totally new therapeutic avenue in fighting obesity and diabetes. In cooperation with scientists from Nice in France, Scheideler and his team have recently developed a cellular model on which, for the first time, it is possible to study this transformation of energy-storing white into energy-burning brown fat cells (4). This GEN-AU sponsored research by the researchers of Graz was so successful that it was included in the recently-started large EU project DIABAT, which researches the transformation of white into brown fat tissue in the treatment of diabetes.

A GEN-AU project on non-coding RNA, within which Scheideler's research was conducted, examined RNA from parts of the genome that were long considered "junk DNA," since the RNA it produces is not mRNA and thus does not provide any building instructions for proteins. By now it has become clear to the entire scientific community that precisely these regions of the genome are extremely important particularly for complex organisms and that this constitutes one of the most significant biological insights of the last decade. This further underlines how timely and relevant the work of the GEN-AU project on noncoding RNA is. "The work of Scheideler's group is one of the success stories of the GEN-AU project on non-coding RNA," say both of the scientific coordinators of the project, Alexander Hüttenhofer and Norbert Nolacek. The success of this work has not just been reflected in academic publications but also in a patent registration. Furthermore, Scheideler's colleague Karbiener won two prizes for his excellent doctoral thesis, respectively from the Technical University of Graz and the Friedrich Schmiedl Foundation.

(1) Merkel et al (2010). "Identification of differential and functionally active miRNAs in both ALK+ and ALK- anaplastic large cell lymphoma." Proceedings of the National Academy of Science USA 107(37):16228-33.

(2) Karbiener et al. (2009) "microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma," Biochemical and Biophysical Research Communications 390:247-251.

(3) Karbiener et al. (2011) "MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2." RNA Biology 8(5):850-860.

(4) Pisani et al. (2011) "Differentiation of human adipose-derived stem cells into 'brite' (brown-in-white) adipocytes." Cellular Endocrinology, Frontiers in Cellular Endocrinology 2(87):1-9


Story Source:

The above story is based on materials provided by Österreichisches Genomforschungsprogramm GEN-AU. Note: Materials may be edited for content and length.


Cite This Page:

Österreichisches Genomforschungsprogramm GEN-AU. "MicroRNAs offer new hope against obesity and diabetes." ScienceDaily. ScienceDaily, 29 March 2012. <www.sciencedaily.com/releases/2012/03/120329101621.htm>.
Österreichisches Genomforschungsprogramm GEN-AU. (2012, March 29). MicroRNAs offer new hope against obesity and diabetes. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/03/120329101621.htm
Österreichisches Genomforschungsprogramm GEN-AU. "MicroRNAs offer new hope against obesity and diabetes." ScienceDaily. www.sciencedaily.com/releases/2012/03/120329101621.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) — Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) — Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) — At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) — The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins