Featured Research

from universities, journals, and other organizations

Scientists regenerate damaged mouse hearts by transforming scar tissue into beating heart muscle

Date:
April 18, 2012
Source:
Gladstone Institutes
Summary:
Scientists have announced a medical breakthrough that one day may help doctors restore hearts damaged by heart attacks -- by converting scar-forming cardiac cells into beating heart muscle.

Researchers are using genetic engineering to convert scar-forming cardiac cells into beating heart muscle.
Credit: Image courtesy of Gladstone Institutes

Scientists at the Gladstone Institutes just announced a research breakthrough in mice that one day may help doctors restore hearts damaged by heart attacks -- by converting scar-forming cardiac cells into beating heart muscle.

These scientists previously transformed such cells into cardiac muscle-like cells in petri dishes. But Gladstone postdoctoral scholar Li Qian, PhD, along with researchers in the laboratory of Deepak Srivastava, MD, has now accomplished this transformation in living animals -- and with even greater success. The results, which may have broad human-health implications, are described in the latest issue of Nature, available online April 18.

Cardiovascular disease is the world's leading cause of death. Annually in the United States alone, the nearly 1 million Americans who survive a heart attack are left with failing hearts that can no longer beat at full capacity.

"The damage from a heart attack is typically permanent because heart-muscle cells -- deprived of oxygen during the attack -- die and scar tissue forms," said Dr. Srivastava, who directs cardiovascular and stem cell research at Gladstone, an independent and nonprofit biomedical-research institution. "But our experiments in mice are a proof of concept that we can reprogram non-beating cells directly into fully functional, beating heart cells -- offering an innovative and less invasive way to restore heart function after a heart attack."

In laboratory experiments with mice that had experienced a heart attack, Drs. Qian and Srivastava delivered three genes that normally guide embryonic heart development -- together known as GMT -- directly into the damaged region. Within a month, non-beating cells that normally form scar tissue transformed into beating heart-muscle cells. Within three months, the hearts were beating even stronger and pumping more blood.

"These findings could have a significant impact on heart-failure patients -- whose damaged hearts make it difficult for them to engage in normal activities like walking up a flight of stairs," said Dr. Qian, who is also a California Institute for Regenerative Medicine postdoctoral scholar and a Roddenberry Fellow. "This research may result in a much-needed alternative to heart transplants -- for which donors are extremely limited. And because we are reprogramming cells directly in the heart, we eliminate the need to surgically implant cells that were created in a petri dish."

"Our next goal is to replicate these experiments and test their safety in larger mammals, such as pigs, before considering clinical trials in humans," added Dr. Srivastava, who is also a professor at the University of California, San Francisco (UCSF), with which Gladstone is affiliated. "We hope that our research will lay the foundation for initiating cardiac repair soon after a heart attack -- perhaps even when the patient arrives in the emergency room."

This research builds on the groundbreaking cell-reprogramming work of another Gladstone scientist and UCSF professor of anatomy, Shinya Yamanaka, MD, PhD. Dr. Yamanaka's 2007 discovery of a way to turn adult human skin cells into cells that act like embryonic stem cells has radically advanced the fields of cell biology and stem cell research. But these new Gladstone experiments go further by both completing the experiments directly in live hearts and by employing a technique called "direct reprogramming." Direct reprogramming could revolutionize the field of regenerative medicine, as it lets scientists transform one adult cell type into another without first having to revert back to the stem cell state. In the future, Gladstone scientists hope to use direct reprogramming not only to treat heart failure, but also for spinal cord injury and devastating illnesses such as Alzheimer's and Parkinson's disease.

Other scientists who participated in this research at Gladstone include Yu Huang, MD, PhD, Ian Spencer, PhD, Amy Foley, Vasanth Vedantham MD, PhD, Lei Liu and Ji-dong Fu, PhD. Funding for this research came from a wide variety of sources, including the California Institute for Regenerative Medicine, the William H. Younger Foundation, The Roddenberry Foundation and the National Heart, Lung and Blood Institute.


Story Source:

The above story is based on materials provided by Gladstone Institutes. Note: Materials may be edited for content and length.


Journal Reference:

  1. Li Qian, Yu Huang, C. Ian Spencer, Amy Foley, Vasanth Vedantham, Lei Liu, Simon J. Conway, Ji-dong Fu, Deepak Srivastava. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature, 2012; DOI: 10.1038/nature11044

Cite This Page:

Gladstone Institutes. "Scientists regenerate damaged mouse hearts by transforming scar tissue into beating heart muscle." ScienceDaily. ScienceDaily, 18 April 2012. <www.sciencedaily.com/releases/2012/04/120418135037.htm>.
Gladstone Institutes. (2012, April 18). Scientists regenerate damaged mouse hearts by transforming scar tissue into beating heart muscle. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2012/04/120418135037.htm
Gladstone Institutes. "Scientists regenerate damaged mouse hearts by transforming scar tissue into beating heart muscle." ScienceDaily. www.sciencedaily.com/releases/2012/04/120418135037.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins