Featured Research

from universities, journals, and other organizations

Computer-designed molecules point to new therapy for cystic fibrosis

Date:
April 19, 2012
Source:
Duke University
Summary:
By developing software that uses 3-D models of proteins involved in cystic fibrosis, a team of scientists has identified several new molecules that may ease the symptoms of the disease.

This graphic shows the protein-protein interaction that damages cells in cystic fibrosis. The blue structure is the computer-designed molecule that blocks the interaction.
Credit: Bruce Donald, Duke

By developing software that uses 3-D models of proteins involved in cystic fibrosis, a team of scientists at Duke University has identified several new molecules that may ease the symptoms of the disease.

Computer algorithms created by the team predict how well a given molecular structure will block a basic protein-protein interaction known to occur in cystic fibrosis. To test the predictions, the scientists synthesized the molecules and measured how well they attached to one of the proteins in that interaction. The team then placed the best molecule into human cells with the cystic fibrosis mutation in a laboratory dish and found that their new drug blocked the protein-protein interaction and increased the cells' ability to balance salt and water levels.

The results, which appear in the April 19 Public Library of Science Computational Biology, suggest that computers could make drug design for cystic fibrosis faster.

"We have known the genetic cause of cystic fibrosis since 1985. Now, by understanding its biology and chemistry, we can design and create targeted drugs to correct for the genetic flaw," said Bruce Donald, a Duke computer scientist and biochemist who led the study.

Cystic fibrosis, or CF, is a childhood disease causing the lungs and pancreas to fill with mucus, making it hard to breathe and absorb nutrients from food. The mucus builds in the organs as the levels of salt and water in the cells become unbalanced because of a defective protein.

That protein, called CFTR, the cystic fibrosis transmembrane conductance regulator, regulates salt and water in the cell. In CF, it is defective because the genes that generate it are mutated. CFTRs are routinely rounded up for recycling in the cell by a protein called CAL that binds to CFTR and hauls it away. But defective CFTR proteins in cystic fibrosis patients send a signal that they are faulty, making their recycling rate much higher.

Currently, no treatments exist to target the genetic mutations that cause cystic fibrosis. Scientists have discovered molecules that target CFTRs' defects, such as incorrect folding and fast recycling, and there are a few molecules that help correct how CFTR folds or slow down the CAL recycling truck. These molecules help keep copies of CFTR functioning in the cell membrane to maintain some balance between salt and water levels.

Donald and his graduate student Kyle Roberts thought that computer algorithms based on the structure of CAL and similar proteins could quickly generate several dozen more molecules for slowing recycling by CAL and increase the pool of potential cystic fibrosis treatments.

"Research shows that you only need a fraction of normal CFTR activity to alleviate cystic fibrosis symptoms, so keeping CFTR in the membrane by using our inhibitors could have a significant therapeutic effect," said Roberts, first author of the new study.

Donald and Roberts' algorithms searched several thousand potential inhibitors and ranked them based on how strongly it predicted each would bind with CAL. In collaboration with researchers at Dartmouth and in Germany, the scientists synthesized 11 of the highest-ranked sequences and used fluorescent light to measure each molecule's attachment to CAL.

The results show that many of the algorithm-generated molecules attach more strongly to CAL than the connection between CAL and CFTR in nature. The best computer-generated molecules also bind more efficiently to CAL than any previously reported inhibitor.

In a culture of human cells with the cystic fibrosis mutation, the best algorithm-generated inhibitor increased CFTR activity by 12 percent. Donald said the new molecule could be used in combination with another molecule, which corrects how CFTR proteins fold and raises CFTR's activity by 15 percent. The two molecules should work together and could increase CFTR's activity by about 27 percent, he said.

He cautioned that it could be several years before patients with the disease could use the new molecular combination as treatment because the molecules have not yet been tested in patients with the disease. The team has made its software freely available, Donald said, so the computer-design approach could quicken the pace at which molecules and resulting cystic fibrosis therapies are developed.


Story Source:

The above story is based on materials provided by Duke University. The original article was written by Ashley Yeager. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kyle E. Roberts, Patrick R. Cushing, Prisca Boisguerin, Dean R. Madden, Bruce R. Donald. Computational Design of a PDZ Domain Peptide Inhibitor that Rescues CFTR Activity. PLoS Computational Biology, 2012; 8 (4): e1002477 DOI: 10.1371/journal.pcbi.1002477

Cite This Page:

Duke University. "Computer-designed molecules point to new therapy for cystic fibrosis." ScienceDaily. ScienceDaily, 19 April 2012. <www.sciencedaily.com/releases/2012/04/120419191707.htm>.
Duke University. (2012, April 19). Computer-designed molecules point to new therapy for cystic fibrosis. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2012/04/120419191707.htm
Duke University. "Computer-designed molecules point to new therapy for cystic fibrosis." ScienceDaily. www.sciencedaily.com/releases/2012/04/120419191707.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins