Featured Research

from universities, journals, and other organizations

Nutrient supply after algal bloom determines the succession of the bacterial population

Date:
May 4, 2012
Source:
Max-Planck-Gesellschaft
Summary:
Algal blooms can considerably interfere with summer holidays by the sea. In the coastal zone of temperate regions a spring algal bloom is not a sign of excessive nutrient input, but most of all a consequence of the more intense solar irradiation in spring. When algal blooms end, the algae die and their remnants constitute an important nutrient supply for the whole ecosystem. Researchers have examined an algal bloom in the North Sea and identified the microorganisms involved in the degradation of algal remnants. With their findings, the researchers discovered a solution for the so-called Plankton paradox: By specializing in different degradation processes, bacteria apparently occupy separate ecological niches in the sea.

The algae bloom in the German Bight spreads. © H. Teeling/R. Dunker along the East and West Frisian coast. The satellite image from 2011 also shows the sediment discharge of the rivers Elbe and Weser that mix with the algae bloom. The island Helgoland is encircled in yellow.
Credit: NASA images courtesy Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center

Algal blooms can considerably interfere with summer holidays by the sea. In the coastal zone of temperate regions a spring algal bloom is not a sign of excessive nutrient input, but most of all a consequence of the more intense solar irradiation in spring. When algal blooms end, the algae die and their remnants constitute an important nutrient supply for the whole ecosystem. Researchers from the Max Planck Institute in Bremen, along with their co-authors from the University of Greifswald, the Jacobs University, and the Alfred Wegener Institute for Marine and Polar Research, examined an algal bloom in the North Sea and identified the microorganisms involved in the degradation of algal remnants.

With their findings, the researchers discovered a solution for the so-called Plankton paradox: By specializing in different degradation processes, bacteria apparently occupy separate ecological niches in the sea.

For their analyses the scientists filtrated several hundreds of litres of seawater on a regular basis for almost a year off the station "Kabeltonne," a long-term station of the Biologische Anstalt Helgoland that is part of the Alfred Wegener Institute. "Pelagic microorganisms, the so called bacterioplankton, are critical for the breakdown of the dead algal biomass. Especially the dynamic succession in the bacterioplankton caught our attention. Specialized bacterial populations accompany different phases of the algal bloom," says Hanno Teeling from the Max Planck Institute As the scientists could show, processes within the bacterial population control the degradation of the algae.

His colleague Bernhard Fuchs who has been investigating the diversity and bacterioplankton composition for many years at the Max Planck Institute, adds: "For the first time we performed a high resolution analysis of the microbial community at genus level. We could not only identify the bacterial groups but also their functional tools, the enzymes that are involved in the breakdown of the algal bloom."

The results of the study may help the scientists to resolve the so-called plankton paradox: How can so many plankton species coexist in a seemingly homogeneous habitat without competing for nutrients in a way that eliminates certain species? Rudolf Amann, Director of the Max Planck Institute explains: "The secret at the level of the microorganisms is the heterogeneity of the microniches that the different groups inhabit. Thus, the specialized populations complement each other in the degradation of the organic matter."

The scientists used a novel combination of techniques for their analyses. They determined the identity of the microorganisms by CARD-FISH, an in situ technology that can be applied directly to environmental samples. Additionally, they probed the bacterial population during and after the algal bloom by short sequences of a phylogenetic marker gene (16S rRNA pyrotag analyses). "By using a combination of metagenome and metaproteome analyses we succeeded to detect the active key enzymes in complex environmental samples. This allows us to infer the role of the respective bacterial groups from their metabolic function," explains Thomas Schweder from the University of Greifswald. "This was only possibly by the computer-controlled integration of all data through bioinformatics,," states Frank Oliver Glφckner from the Max Planck Institute and Jacobs University.

In the early phase of the algal bloom the scientists encountered a variety of enzymes for the degradation of complex algal carbohydrates such as laminarin. At a later stage transport proteins for peptides, short protein units, and transporters for the growth limiting nutrient phosphate and simple sugar components dominated the enzymatic cocktail. Noteworthy was the high portion of certain transport proteins, the TonB-dependent transporters that can transport larger molecules directly into the interior of the cells. This discovery may disprove the conventional acceptance that long-chained molecules need to be broken up into smaller components before the cell can take them up. The TonB-transporter may enable the Flavobacteria, one of the dominating bacterial groups, to couple the assimilation and degradation and thus to gain a competitive advance towards other bacterial groups. At the end of the bloom the bacteria increasingly produced sulfatases that cleave sulfate esters from algae carbohydrates hard to decompose and thus allow the complete degradation of these substances. Hence, the scientists discovered a bacterial population in the algae bloom that did not only differ in its composition but also in its function from the bacterial community found in crystal clear, remote open waters.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Max-Planck-Gesellschaft. "Nutrient supply after algal bloom determines the succession of the bacterial population." ScienceDaily. ScienceDaily, 4 May 2012. <www.sciencedaily.com/releases/2012/05/120504110125.htm>.
Max-Planck-Gesellschaft. (2012, May 4). Nutrient supply after algal bloom determines the succession of the bacterial population. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2012/05/120504110125.htm
Max-Planck-Gesellschaft. "Nutrient supply after algal bloom determines the succession of the bacterial population." ScienceDaily. www.sciencedaily.com/releases/2012/05/120504110125.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) — An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) — The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) — A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) — ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins