Featured Research

from universities, journals, and other organizations

Robot reveals the inner workings of brain cells: Automated way to record electrical activity inside neurons in the living brain

Date:
May 6, 2012
Source:
Georgia Institute of Technology Research News
Summary:
Researchers have developed a way to automate the process of finding and recording information from neurons in the living brain. The researchers have shown that a robotic arm guided by a cell-detecting computer algorithm can identify and record from neurons in the living mouse brain with better accuracy and speed than a human experimenter.

Researchers at MIT and the Georgia Institute of Technology have developed a way to automate a process called whole-cell patch clamping, which involves bringing a tiny hollow glass pipette in contact with the cell membrane of a neuron, then opening up a small pore in the membrane to record the electrical activity within the cell.
Credit: Sputnik Animation and MIT McGovern Institute

Gaining access to the inner workings of a neuron in the living brain offers a wealth of useful information: its patterns of electrical activity, its shape, even a profile of which genes are turned on at a given moment. However, achieving this entry is such a painstaking task that it is considered an art form; it is so difficult to learn that only a small number of labs in the world practice it.

But that could soon change: Researchers at MIT and the Georgia Institute of Technology have developed a way to automate the process of finding and recording information from neurons in the living brain. The researchers have shown that a robotic arm guided by a cell-detecting computer algorithm can identify and record from neurons in the living mouse brain with better accuracy and speed than a human experimenter.

The new automated process eliminates the need for months of training and provides long-sought information about living cells' activities. Using this technique, scientists could classify the thousands of different types of cells in the brain, map how they connect to each other, and figure out how diseased cells differ from normal cells.

The project is a collaboration between the labs of Ed Boyden, associate professor of biological engineering and brain and cognitive sciences at MIT, and Craig Forest, an assistant professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech.

"Our team has been interdisciplinary from the beginning, and this has enabled us to bring the principles of precision machine design to bear upon the study of the living brain," Forest says. His graduate student, Suhasa Kodandaramaiah, spent the past two years as a visiting student at MIT, and is the lead author of the study, which appears in the May 6 issue of Nature Methods.

The method could be particularly useful in studying brain disorders such as schizophrenia, Parkinson's disease, autism and epilepsy, Boyden says. "In all these cases, a molecular description of a cell that is integrated with [its] electrical and circuit properties … has remained elusive," says Boyden, who is a member of MIT's Media Lab and McGovern Institute for Brain Research. "If we could really describe how diseases change molecules in specific cells within the living brain, it might enable better drug targets to be found."

Kodandaramaiah, Boyden and Forest set out to automate a 30-year-old technique known as whole-cell patch clamping, which involves bringing a tiny hollow glass pipette in contact with the cell membrane of a neuron, then opening up a small pore in the membrane to record the electrical activity within the cell. This skill usually takes a graduate student or postdoc several months to learn.

Kodandaramaiah spent about four months learning the manual patch-clamp technique, giving him an appreciation for its difficulty. "When I got reasonably good at it, I could sense that even though it is an art form, it can be reduced to a set of stereotyped tasks and decisions that could be executed by a robot," he says.

To that end, Kodandaramaiah and his colleagues built a robotic arm that lowers a glass pipette into the brain of an anesthetized mouse with micrometer accuracy. As it moves, the pipette monitors a property called electrical impedance -- a measure of how difficult it is for electricity to flow out of the pipette. If there are no cells around, electricity flows and impedance is low. When the tip hits a cell, electricity can't flow as well and impedance goes up.

The pipette takes two-micrometer steps, measuring impedance 10 times per second. Once it detects a cell, it can stop instantly, preventing it from poking through the membrane. "This is something a robot can do that a human can't," Boyden says.

Once the pipette finds a cell, it applies suction to form a seal with the cell's membrane. Then, the electrode can break through the membrane to record the cell's internal electrical activity. The robotic system can detect cells with 90 percent accuracy, and establish a connection with the detected cells about 40 percent of the time.

The researchers also showed that their method can be used to determine the shape of the cell by injecting a dye; they are now working on extracting a cell's contents to read its genetic profile.

Development of the new technology was funded primarily by the National Institutes of Health, the National Science Foundation and the MIT Media Lab.

The researchers recently created a startup company, Neuromatic Devices, to commercialize the device.

The researchers are now working on scaling up the number of electrodes so they can record from multiple neurons at a time, potentially allowing them to determine how different parts of the brain are connected.

They are also working with collaborators to start classifying the thousands of types of neurons found in the brain. This "parts list" for the brain would identify neurons not only by their shape -- which is the most common means of classification -- but also by their electrical activity and genetic profile.

"If you really want to know what a neuron is, you can look at the shape, and you can look at how it fires. Then, if you pull out the genetic information, you can really know what's going on," Forest says. "Now you know everything. That's the whole picture."

Boyden says he believes this is just the beginning of using robotics in neuroscience to study living animals. A robot like this could potentially be used to infuse drugs at targeted points in the brain, or to deliver gene therapy vectors. He hopes it will also inspire neuroscientists to pursue other kinds of robotic automation -- such as in optogenetics, the use of light to perturb targeted neural circuits and determine the causal role that neurons play in brain functions.

Neuroscience is one of the few areas of biology in which robots have yet to make a big impact, Boyden says. "The genome project was done by humans and a giant set of robots that would do all the genome sequencing. In directed evolution or in synthetic biology, robots do a lot of the molecular biology," he says. "In other parts of biology, robots are essential."

Other co-authors include MIT grad student Giovanni Talei Franzesi and MIT postdoc Brian Y. Chow.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology Research News. Note: Materials may be edited for content and length.


Journal Reference:

  1. Suhasa B Kodandaramaiah, Giovanni Talei Franzesi, Brian Y Chow, Edward S Boyden, Craig R Forest. Automated whole-cell patch-clamp electrophysiology of neurons in vivo. Nature Methods, 2012; DOI: 10.1038/nmeth.1993

Cite This Page:

Georgia Institute of Technology Research News. "Robot reveals the inner workings of brain cells: Automated way to record electrical activity inside neurons in the living brain." ScienceDaily. ScienceDaily, 6 May 2012. <www.sciencedaily.com/releases/2012/05/120506160117.htm>.
Georgia Institute of Technology Research News. (2012, May 6). Robot reveals the inner workings of brain cells: Automated way to record electrical activity inside neurons in the living brain. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/05/120506160117.htm
Georgia Institute of Technology Research News. "Robot reveals the inner workings of brain cells: Automated way to record electrical activity inside neurons in the living brain." ScienceDaily. www.sciencedaily.com/releases/2012/05/120506160117.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins