Featured Research

from universities, journals, and other organizations

Portable diagnostics designed to be shaken, not stirred

Date:
May 9, 2012
Source:
University of Washington
Summary:
A textured surface mimics a lotus leaf to move drops of liquid in particular directions. The low-cost system could be used in portable medical or environmental tests.

As medical researchers and engineers try to shrink diagnostics to fit in a person's pocket, one question is how to easily move and mix small samples of liquid. University of Washington researchers have built and patented a surface that, when shaken, moves drops along certain paths to conduct medical or environmental tests.

"This allows us to move drops as far as we want, and in any kind of layout that we want," said Karl Böhringer, a UW professor of electrical engineering and bioengineering. The low-cost system, published in a recent issue of the journal Advanced Materials, would require very little energy and avoids possible contamination by diluting or electrifying the samples in order to move them.

The simple technology is a textured surface that tends to push drops along a given path. It's inspired by the lotus effect -- a phenomenon in which a lotus leaf's almost fractal texture makes it appear to repel drops of water.

"The lotus leaf has a very rough surface, in which each big bump has a smaller bump on it," Böhringer said. "We can't make our surface exactly the same as a lotus leaf, but what we did is extract the essence of why it works."

The UW team used nanotechnology manufacturing techniques to build a surface with tiny posts of varying height and spacing. When a drop sits on this surface, it makes so little contact with the surface that it's almost perfectly round. That means even a small jiggle can move it. Researchers used an audio speaker or machine to vibrate the platform at 50 to 80 times per second. The asymmetrical surface moves individual drops along predetermined paths to mix, modify or measure their contents. Changing the vibration frequency can alter a drop's speed, or can target a drop of a certain size or weight.

"All you need is a vibration, and making these surfaces is very easy. You can make it out of a piece of plastic," Böhringer said. "I could imagine this as a device that costs less than a dollar -- maybe much less than that -- and is used with saliva or blood or water samples."

In testing, different versions of the UW system could move the drops uphill, downhill, in circles, upside down, or join two drops and then move the combined sample. The type of system is known as a "lab in a drop": all the ingredients are inside the drop, and surface tension acts as the container to keep everything together.

A student tried using a smartphone's speaker to vibrate the platform, but so far a phone does not supply enough energy to move the drops. To better accommodate low-energy audio waves, the group will use the UW's electron beam lithography machine to build a surface with posts up to 100 times smaller.

"There's good evidence, from what we've done so far, that if we make everything smaller then we will need less energy to achieve the same effect," Böhringer said. "We envision a device that you plug into your phone, it's powered by the battery of the phone, an app generates the right type of audio vibrations, and you run your experiment."

Co-authors of the paper are former UW undergraduate Todd Duncombe and former UW graduate student Yegȃn Erdem, both at the University of California, Berkeley; former UW postdoctoral researcher Ashutosh Shastry, now at Corium International in Menlo Park, Calif.; and Rajashree Baskaran, a UW affiliate assistant professor of electrical engineering who works at Intel Corp.

The research was funded by the National Science Foundation, the National Institutes of Health, Intel and the UW's Technology Gap Innovation Fund.


Story Source:

The above story is based on materials provided by University of Washington. Note: Materials may be edited for content and length.


Journal Reference:

  1. Todd A. Duncombe, E. Yegân Erdem, Ashutosh Shastry, Rajashree Baskaran, Karl F. Böhringer. Controlling Liquid Drops with Texture Ratchets. Advanced Materials, 2012; 24 (12): 1545 DOI: 10.1002/adma.201104446

Cite This Page:

University of Washington. "Portable diagnostics designed to be shaken, not stirred." ScienceDaily. ScienceDaily, 9 May 2012. <www.sciencedaily.com/releases/2012/05/120509092421.htm>.
University of Washington. (2012, May 9). Portable diagnostics designed to be shaken, not stirred. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2012/05/120509092421.htm
University of Washington. "Portable diagnostics designed to be shaken, not stirred." ScienceDaily. www.sciencedaily.com/releases/2012/05/120509092421.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) — After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) — Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins