Featured Research

from universities, journals, and other organizations

Microfluidics: Creating chaos

Date:
May 10, 2012
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
A quiet revolution is taking place in the fields of biology and chemistry. Microfluidic devices, which allow fluid manipulation in micro-scale channels, are slowly but surely finding their place on the lab bench. A new microfluidic device can operate as a mixer or a valve, improving the efficiency of micro-scale laboratory apparatus.

The microfluidic oscillator mixer developed at the Singapore Institute of Manufacturing Technology
Credit: Copyright SIMTech

A quiet revolution is taking place in the fields of biology and chemistry. Microfluidic devices, which allow fluid manipulation in micro-scale channels, are slowly but surely finding their place on the lab bench. A new microfluidic device can operate as a mixer or a valve, improving the efficiency of micro-scale laboratory apparatus.

These tools are increasingly taking the place of the usual macro scale glassware and offer a number of benefits including faster processing, less reagents, less waste and greater reaction control. However, at these small scales, fluids tend to flow in parallel layers which do not interact -- a phenomenon known as laminar flow -- meaning that mixing of reagents becomes difficult. However, recent work by Huanming Xia and colleagues from the Singapore Institute of Manufacturing Technology based at A*STAR introduced a new microfluidic device which changes laminar fluid flow into an oscillating flow, which substantially enhances the efficiency of mixing.

The A*STAR team used the natural elasticity of a thin, flat silicone membrane freely supported on a circular stepped cavity separating two chambers through which liquid flows perpendicular to the membrane. When fluid is pumped through the chamber, the membrane deflects, becoming convex downstream of the flow, although the flow remained laminar and stable. Further deflection of the membrane occurs until the elasticity and lift forces of the silicone makes the membrane bounce back and the process then repeats, leading the generation of an oscillating fluid flow. The device can also work as a valve; at higher pressures, the membrane completely blocks the forward flow whilst reverse flow forces the membrane to the ceiling of the upper chamber, completely blocking fluid transfer.

The researchers also demonstrated the mixing behaviour of their device in a Y-shaped fluidic element in which a membrane oscillator was incorporated into one channel. When fluid was pumped into the other chamber, the presence of the membrane prevented mixing of the two liquid streams. Subsequent introduction of a second liquid at low pressure allowed the fluid streams to meet at the intersection point of the Y-shaped channel although at this point flow was laminar and no mixing occurred. However, increasing the pressure from the oscillator-containing channel led to the generation of oscillatory behavior with the result that the two fluid flows mixed chaotically.

The researchers are also working on an improved oscillator design employing a thin metal spring foil in place of the silicon rubber diaphragm. Such measures are intended to improve still further the mixing performance of the system and lead to more durable membrane mixing systems.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. H. M. Xia, Z. P. Wang, W. Fan, A. Wijaya, W. Wang, Z. F. Wang. Converting steady laminar flow to oscillatory flow through a hydroelasticity approach at microscales. Lab on a Chip, 2012; 12 (1): 60 DOI: 10.1039/c1lc20667b

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Microfluidics: Creating chaos." ScienceDaily. ScienceDaily, 10 May 2012. <www.sciencedaily.com/releases/2012/05/120510095616.htm>.
The Agency for Science, Technology and Research (A*STAR). (2012, May 10). Microfluidics: Creating chaos. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2012/05/120510095616.htm
The Agency for Science, Technology and Research (A*STAR). "Microfluidics: Creating chaos." ScienceDaily. www.sciencedaily.com/releases/2012/05/120510095616.htm (accessed September 14, 2014).

Share This



More Matter & Energy News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com
Scientists Have Captured The Sound Of An Atom

Scientists Have Captured The Sound Of An Atom

Newsy (Sep. 12, 2014) Scientists have captured the sound of a single atom by measuring its vibrations. We can't hear it, but it's reportedly the faintest sound possible. Video provided by Newsy
Powered by NewsLook.com
Solar Flare Surges Off Sun

Solar Flare Surges Off Sun

Reuters - US Online Video (Sep. 11, 2014) NASA captures video of a significant flare surging off the sun. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins