Featured Research

from universities, journals, and other organizations

Scientists identify protein that stimulates brown fat to burn calories

Date:
May 10, 2012
Source:
University of Cambridge
Summary:
Scientists have identified a protein which regulates the activation of brown fat in both the brain and the body's tissues.

Brown fat.
Credit: Dr. Miguel Lopez, from the University of Santiago de Compostela in Spain

Scientists have identified a protein which regulates the activation of brown fat in both the brain and the body's tissues. Their research, which was conducted in mice, was published May 11, in the journal Cell.

Related Articles


Unlike white fat, which functions primarily to store up fat, brown fat (also known as brown adipose tissue) burns fats to generate heat in a process known as thermogenesis. The research, led by scientists at the University of Cambridge Metabolic Research Laboratories at the Institute of Metabolic Science, discovered that the protein BMP8B acts on a specific metabolic system (which operates in the brain and the tissues) to regulate brown fat, making it a potential therapeutic target.

The scientists believe that activating brown fat could help to support current weight loss programmes, which individuals often struggle to maintain.

Dr Andrew Whittle, one of the authors of the paper from the Institute of Metabolic Science, said: "Other proteins made by the body can enhance heat production in brown fat, such as thyroid hormone but often these proteins have important effects in other organs too. Therefore they are not good targets for developing new weight loss treatments. However, BMP8B seems to be very specific for regulating the heat producing activity of brown fat, making it a more ideal mechanism for new therapies."

The experiments showed that when mice lacked the protein BMP8B they found it more difficult to maintain their normal body temperature. They also became much more obese than normal mice, particularly when fed a high-fat diet. Additionally, when the researchers treated brown fat cells with BMP8B they responded more strongly to activation by the nervous system. Furthermore, when BMP8B was administered to specific parts of the brain it increased the amount of nervous activation of brown adipose tissue. The result was that these BMP8B-treated brown fat cells burned more fat and mice given BMP8B in the brain lost weight.

Professor Toni Vidal-Puig, lead author of the study from the Institute of Metabolic Science and a member of the MRC Centre for Obesity and Related Metabolic Diseases, said: "A major feature of current weight-loss strategies is that people lose a lot of weight early on, but then reach a plateau despite continuing to follow the same diet regime. This is because the human body is incredibly good at sensing a reduction in food consumption and slows the metabolic rate to compensate. A strategy to increase brown fat activity could potentially be used in conjunction with current weight loss strategies to help prevent the typical decrease in a person's metabolic rate.

"One could be sceptical that techniques to increase metabolic rate might just be compensated by the body trying to make you want to eat more, to fuel this increased metabolism. But our findings showed that treating mice with Bmp8b did not have this effect, it simply made them lose weight by burning more fat in their brown adipose tissue.

"There are obvious differences between mice and humans, and from a therapeutic perspective this work is preliminary. Validation will be necessary to see if manipulating BMP8B would be safe and effective in humans."

The research was funded by the Medical Research Council (MRC), the Wellcome Trust, and the Biotechnology and Biological Sciences Research Council (BBSRC).


Story Source:

The above story is based on materials provided by University of Cambridge. The original story is licensed under a Creative Commons license. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andrew J. Whittle, Stefania Carobbio, Luís Martins, Marc Slawik, Elayne Hondares, María Jesús Vázquez, Donald Morgan, Robert I. Csikasz, Rosalía Gallego, Sergio Rodriguez-Cuenca, Martin Dale, Samuel Virtue, Francesc Villarroya, Barbara Cannon, Kamal Rahmouni, Miguel López, Antonio Vidal-Puig. BMP8B Increases Brown Adipose Tissue Thermogenesis through Both Central and Peripheral Actions. Cell, 2012; 149 (4): 871 DOI: 10.1016/j.cell.2012.02.066

Cite This Page:

University of Cambridge. "Scientists identify protein that stimulates brown fat to burn calories." ScienceDaily. ScienceDaily, 10 May 2012. <www.sciencedaily.com/releases/2012/05/120510122813.htm>.
University of Cambridge. (2012, May 10). Scientists identify protein that stimulates brown fat to burn calories. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2012/05/120510122813.htm
University of Cambridge. "Scientists identify protein that stimulates brown fat to burn calories." ScienceDaily. www.sciencedaily.com/releases/2012/05/120510122813.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins