Featured Research

from universities, journals, and other organizations

Weight struggles? Blame new neurons in your hypothalamus

Date:
May 21, 2012
Source:
Johns Hopkins Medicine
Summary:
New nerve cells formed in a select part of the brain could hold considerable sway over how much you eat and consequently weigh, new animal research suggests.

New nerve cells formed in a select part of the brain could hold considerable sway over how much you eat and consequently weigh, new animal research by Johns Hopkins scientists suggests in a study published in the May issue of Nature Neuroscience.

The idea that the brain is still forming new nerve cells, or neurons, into adulthood has become well-established over the past several decades, says study leader Seth Blackshaw, Ph.D., an associate professor in the Solomon H. Snyder Department of Neuroscience at the Johns Hopkins University School of Medicine. However, he adds, researchers had previously thought that this process, called neurogenesis, only occurs in two brain areas: the hippocampus, involved in memory, and the olfactory bulb, involved in smell.

More recent research suggests that a third area, the hypothalamus -- associated with a variety of bodily functions, including sleep, body temperature, hunger and thirst -- also produces new neurons. However, the precise source of this neurogenesis and the function of these newborn neurons remained a mystery.

To answer these questions, Blackshaw and his colleagues used mice as a model system. The researchers started by investigating whether any particular part of the hypothalamus had a high level of cell growth, suggesting that neurogenesis was occurring. They injected the animals with a compound called bromodeoxyuridine (BrdU), which selectively incorporates itself into newly replicating DNA of dividing cells, where it's readily detectable. Within a few days, the researchers found high levels of BrdU in an area of the hypothalamus called the median eminence, which lies on the base of the brain's fluid-filled third ventricle.

Further tests showed that these rapidly proliferating cells were tanycytes, a good candidate for producing new neurons since they have many characteristics in common with cells involved in neurogenesis during early development. To confirm that tanycytes were indeed producing new neurons and not other types of cells, Blackshaw and his colleagues selectively bred mice that produced a fluorescent protein only in their tanycytes. Within a few weeks, they found neurons that also fluoresced, proof that these cells came from tanycyte progenitors.

With the source of hypothalamic neurogenesis settled, the researchers turned to the question of function. Knowing that many previous studies have suggested that animals raised on a high-fat diet are at significantly greater risk of obesity and metabolic syndrome as adults, Blackshaw's team wondered whether hypothalamic neurogenesis might play a role in this phenomenon.

The researchers fed mice a diet of high-fat chow starting at weaning and looked for evidence of neurogenesis at several different time points. While very young animals showed no difference compared with mice fed normal chow, neurogenesis quadrupled in adults that had consistently eaten the high-fat chow since weaning. These animals gained more weight and had higher fat mass than animals raised on normal chow.

When Blackshaw and his colleagues killed off new neurons in the high-fat eaters by irradiating just their median eminences with precise X-ray beams, the mice gained significantly less weight and fat than animals who had eaten the same diet and were considerably more active, suggesting that these new neurons play a critical role in regulating weight, fat storage and energy expenditure.

"People typically think growing new neurons in the brain is a good thing -- but it's really just another way for the brain to modify behavior," Blackshaw explains. He adds that hypothalamic neurogenesis is probably a mechanism that evolved to help wild animals survive and helped our ancestors do the same in the past. Wild animals that encounter a rich and abundant food source would be well-served to eat as much as possible, since such a resource is typically scarce in nature.

Being exposed to such a resource during youth, and consequently encouraging the growth of neurons that would promote more food intake and energy storage in the future, would be advantageous. However, Blackshaw explains, for lab animals as well as people in developed countries, who have nearly unlimited access to abundant food, such neurogenesis isn't necessarily beneficial -- it could encourage excessive weight gain and fat storage when they're not necessary.

If the team's work is confirmed in future studies, he adds, researchers might eventually use these findings as a basis to treat obesity by inhibiting hypothalamic neurogenesis, either by irradiating the median eminence or developing drugs that inhibit this process.

Other Hopkins researchers involved in this study include Daniel A. Lee, Joseph L. Bedont, Thomas Pak, Hong Wang, Juan Song, Ana Miranda-Angulo, Vani Takiar, Vanessa Charubhumi, Susan Aja and Eric Ford.

This research was supported by the National Institutes of Health, the National Science Foundation, a Basil O'Connor Starter Scholar Award, the Klingenstein Fund and NARSAD. Seth Blackshaw is a W.M. Keck Distinguished Young Scholar in Medical Research.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel A Lee, Joseph L Bedont, Thomas Pak, Hong Wang, Juan Song, Ana Miranda-Angulo, Vani Takiar, Vanessa Charubhumi, Francesca Balordi, Hirohide Takebayashi, Susan Aja, Eric Ford, Gordon Fishell, Seth Blackshaw. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nature Neuroscience, 2012; 15 (5): 700 DOI: 10.1038/nn.3079

Cite This Page:

Johns Hopkins Medicine. "Weight struggles? Blame new neurons in your hypothalamus." ScienceDaily. ScienceDaily, 21 May 2012. <www.sciencedaily.com/releases/2012/05/120521115331.htm>.
Johns Hopkins Medicine. (2012, May 21). Weight struggles? Blame new neurons in your hypothalamus. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/05/120521115331.htm
Johns Hopkins Medicine. "Weight struggles? Blame new neurons in your hypothalamus." ScienceDaily. www.sciencedaily.com/releases/2012/05/120521115331.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins