Featured Research

from universities, journals, and other organizations

Squid ink from Jurassic period identical to modern cuttlefish ink

Date:
May 21, 2012
Source:
University of Virginia
Summary:
Scientists have found that two ink sacs from 160-million-year-old giant squid fossils discovered 2 years ago in England contain the pigment melanin, and that it is essentially identical to the melanin found in the ink sacs of modern-day squid.

An ink sac from a 160-million-year-old giant cephalopod fossil contains the pigment melanin; it is essentially identical to the melanin found in the ink sac of a modern-day cuttlefish.
Credit: Image courtesy of University of Virginia

und that two ink sacs from 160-million-year-old giant cephalopod fossils discovered two years ago in England contain the pigment melanin, and that it is essentially identical to the melanin found in the ink sac of a modern-day cuttlefish.

The study is published online in the May 21 edition of the journal Proceedings of the National Academy of Sciences.

The finding -- in an extremely rare case of being able to study organic material that is hundreds of millions of years old -- suggests that the ink-screen escape mechanism of cephalopods -- cuttlefish, squid and octopuses -- has not evolved since the Jurassic period, and that melanin could be preserved intact in the fossils of a range of organisms.

"Though the other organic components of the cephalopod we studied are long gone, we've discovered through a variety of research methods that the melanin has remained in a condition that could be studied in exquisite detail," said John Simon, one of the study authors, a chemistry professor and the executive vice president and provost at U.Va.

One of the ink sacs studied is the only intact ink sac ever discovered.

Phillip Wilby of the British Geological Survey found it in Christian Malford, Wiltshire, England, west of London near Bristol. He sent samples to Simon and Japanese chemist Shoskue Ito, both experts on melanin, who then engaged research colleagues in the United States, the United Kingdom, Japan and India to investigate the samples using a combination of direct, high-resolution chemical techniques to determine whether or not the melanin had been preserved.

It had.

The investigators then compared the chemical composition of the fossil melanin to the melanin in the ink of the modern cuttlefish, Sepia officinalis, common to the Mediterranean, North and Baltic seas.

They found a match.

"It's close enough that I would argue that the pigmentation in this class of animals has not evolved in 160 million years," Simon said. "The whole machinery apparently has been locked in time and passed down through succeeding generations of cuttlefish. It's a very optimized system for this animal and has been optimized for a long time."

Generally animal tissue, made up mostly of protein, degrades quickly. Over the course of millions of years all that is likely to be found from an animal is skeletal remains or an impression of the shape of the animal in surrounding rock. Scientists can learn much about an animal by its bones and impressions, but without organic matter they are left with many unanswered questions.

But melanin is an exception. Though organic, it is highly resilient to degradation over the course of vast amounts of time.

"Out of all of the organic pigments in living systems, melanin has the highest odds of being found in the fossil record," Simon said. "That attribute also makes it a challenge to study. We had to use innovative methods from chemistry, biology and physics to isolate the melanin from the inorganic material."

The researchers cross-checked their work using separate complementary experiments designed to capitalize on various molecular features unique to melanin and determined the morphology and chemical composition of the material. This combination of in-depth, multidisciplinary techniques is not normally used by paleontologists to study fossil samples.

"I think the strength of this paper is that it is not tied to a single method," Simon said. "Any one technique would have brought some insights, but potentially more questions than insights. It was really the more holistic approach that fully characterized it and allowed us to actually do a real comparison between what existed during the Jurassic period and what exists now.

"It's also given us a handle on ways of identifying organic components in fossils that might have been missed using standard methods."


Story Source:

The above story is based on materials provided by University of Virginia. The original article was written by Fariss Samarrai. Note: Materials may be edited for content and length.


Journal Reference:

  1. Keely Glass, Shosuke Ito, Philip R. Wilby, Takayuki Sota, Atsushi Nakamura, C. Russell Bowers, Jakob Vinther, Suryendu Dutta, Roger Summons, Derek E. G. Briggs, Kazumasa Wakamatsu, and John D. Simon. Direct chemical evidence for eumelanin pigment from the Jurassic period. PNAS, May 21, 2012 DOI: 10.1073/pnas.1118448109

Cite This Page:

University of Virginia. "Squid ink from Jurassic period identical to modern cuttlefish ink." ScienceDaily. ScienceDaily, 21 May 2012. <www.sciencedaily.com/releases/2012/05/120521163753.htm>.
University of Virginia. (2012, May 21). Squid ink from Jurassic period identical to modern cuttlefish ink. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2012/05/120521163753.htm
University of Virginia. "Squid ink from Jurassic period identical to modern cuttlefish ink." ScienceDaily. www.sciencedaily.com/releases/2012/05/120521163753.htm (accessed September 1, 2014).

Share This




More Fossils & Ruins News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Millions Of Historical Public Domain Photos Added To Flickr

Millions Of Historical Public Domain Photos Added To Flickr

Newsy (Aug. 30, 2014) Historian Kalev Leetaru uploaded a large collection of historical photos, images that were previously difficult to collect. Video provided by Newsy
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Huge Ancient Wine Cellar Found In Israel

Huge Ancient Wine Cellar Found In Israel

Newsy (Aug. 28, 2014) An international team uncovered a large ancient wine celler that likely belonged to a Cannonite ruler. Video provided by Newsy
Powered by NewsLook.com
40,000-Year-Old Mammoth Skeleton Found On Texas Farm

40,000-Year-Old Mammoth Skeleton Found On Texas Farm

Newsy (Aug. 26, 2014) A mammoth skeleton was discovered in a gravel pit on Wayne McEwen's Texas farm back in May. It's now being donated to a museum. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins