Featured Research

from universities, journals, and other organizations

Optical tweezers help researchers uncover key mechanics in cellular communication

Date:
June 1, 2012
Source:
University of California - Irvine
Summary:
By using a laser microbeam technology called optical tweezers, researchers have uncovered fundamental properties of the Notch network, a key molecular signaling system involved with development, cancer and cardiovascular disease.

By using a laser microbeam technology called optical tweezers, UC Irvine and UCLA researchers have uncovered fundamental properties of a key molecular signaling system involved with development, cancer and cardiovascular disease.

Related Articles


In collaboration, UCI's Elliot Botvinick and UCLA's Gerry Weinmaster published online in the journal Developmental Cell complementary studies in which they each used optical tweezers to detect and measure the mechanical force produced by cells when bound to Notch, a cellular pathway that ensures the correct cell types form at a precise time and location in the body.

"The Notch network is used repeatedly during the development of almost every cell type and must be tightly controlled, as inappropriate communication causes developmental defects and cancer," said Weinmaster, a professor of biological chemistry and researcher at UCLA's Jonsson Comprehensive Cancer Center. "Successful design and generation of Notch therapeutics demands a solid understanding of the basic mechanics of the Notch network."

"Optical tweezers act as tiny tractor beams that can hold and manipulate microscopic beads coated with specific molecules," said Botvinick, an assistant professor of biomedical engineering and surgery affiliated with the Beckman Laser Institute and The Edwards Lifesciences Center for Advanced Cardiovascular Technology at UCI. "When cells bind to and pull on the beads, researchers can measure cell-generated forces that are billions of times smaller than the weight of one teaspoon of sugar."

Using this technology, the UCI-UCLA team found that communication via the Notch network involves a sort of tug-of-war between neighboring cells in which Notch molecules are unraveled by force to reveal hidden elements important for cell-to-cell communication.

Together with biochemical and biological cell analyses, their findings provide compelling evidence that pulling on Notch opens a network to deliver instructions for specific cellular responses.

The research sheds new light on the role of cells' neighbors in the development and regulation of tissue and advances efforts to create new therapeutics.

Bhupinder Shergill of UCI and Laurence Meloty-Kapella, Abdiwahab Musse and Jane Kuon of UCLA contributed to the studies.


Story Source:

The above story is based on materials provided by University of California - Irvine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bhupinder Shergill, Laurence Meloty-Kapella, AbdiwahabA. Musse, Gerry Weinmaster, Elliot Botvinick. Optical Tweezers Studies on Notch: Single-Molecule Interaction Strength Is Independent of Ligand Endocytosis. Developmental Cell, 2012; DOI: 10.1016/j.devcel.2012.04.007

Cite This Page:

University of California - Irvine. "Optical tweezers help researchers uncover key mechanics in cellular communication." ScienceDaily. ScienceDaily, 1 June 2012. <www.sciencedaily.com/releases/2012/06/120601135904.htm>.
University of California - Irvine. (2012, June 1). Optical tweezers help researchers uncover key mechanics in cellular communication. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2012/06/120601135904.htm
University of California - Irvine. "Optical tweezers help researchers uncover key mechanics in cellular communication." ScienceDaily. www.sciencedaily.com/releases/2012/06/120601135904.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


How Cells Communicate to Activate Notch Signaling

May 31, 2012 Researchers have shown for the first time that the mechanical force produced by cell-cell interactions is critical for programming by the Notch signaling ... read more

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins