Featured Research

from universities, journals, and other organizations

Physicists discover mechanisms of wrinkle and crumple formation

Date:
June 8, 2012
Source:
University of Massachusetts at Amherst
Summary:
How a featureless sheet develops a complex shape has long remained elusive, but now physicists have identified a fundamental mechanism by which such complex patterns emerge spontaneously.

In recent experiments, Davidovitch and colleagues confirmed their earlier theoretical predictions using an ultra-thin film, just tens of nanometers thick. They say the wrinkle-to-crumple transition reflects a dramatic change called “symmetry breaking” in the distribution of stresses in the sheet.
Credit: UMass Amherst

Smooth wrinkles and sharply crumpled regions are familiar motifs in biological and synthetic sheets, such as plant leaves and crushed foils, say physicists Benny Davidovitch, Narayanan Menon and colleagues at the University of Massachusetts Amherst, but how a featureless sheet develops a complex shape has long remained elusive.

Related Articles


Now, in a cover story of the journal, Proceedings of the National Academy of Sciences, the physicists report that they have identified a fundamental mechanism by which such complex patterns emerge spontaneously.

Davidovitch says they were inspired and moved toward a solution by thinking about how a familiar birthday balloon, made of two circular mylar foils, wrinkles and crumples (two separate processes). The two foils start flat, but when glued together around their edges and injected with helium gas to create higher-than-atmospheric pressure inside, they spontaneously changes shape to accommodate the gas.

"This simple process leads to a fascinating pattern of wrinkles and crumples that emerge spontaneously near the perimeter of each foil," Davidovitch points out. "What we discovered is an unusual sequence of transitions that underlie this and possibly other types of morphological complexity."

In the laboratory, rather than balloons, the researchers including doctoral student Hunter King, who conducted many of the experiments, and postdoctoral researcher Robert Schroll, who carried out theoretical calculations, used microscopically thin films and a drop of water to model the effects they wished to study. They cut a circle of ultra-thin film from a sheet 10,000 times thinner than a piece of paper, only tens of nanometers thick, and place it flat on the water drop nestled in a circular collar, where surface tension holds it in place.

"We then very, very gently inject more and more water into the bubble, very gradually, so it becomes more and more curved without spilling over," says Davidovitch. "When the radius of the drop gets small enough, the thin film starts to develop fine radial wrinkles near its outer perimeter as the water pressure increases If you keep adding pressure, decreasing the radius further, a second transition takes place and the film starts to crumple and to look more like a table cloth, draping with sharp creases over the edge of a flattened top," he adds.

Watching this process through incremental steps, the researchers were able to observe and describe through mathematical formulas how the drop imposes confinement on circles of latitude of the sheet. "The degree of this confinement increases as the drop's radius decreases, and an unusual sequence of transitions can then be observed," says Davidovitch.

With this work the investigators, who had earlier proposed quantitative predictions of wrinkle patterns in ultra-thin sheets by following the principle that such sheets must be free of compression, confirm their theoretical predictions. The current experiments also suggest that the wrinkle-to-crumple transition reflects a dramatic change called "symmetry breaking" in the distribution of stresses in the sheet, rather than just a further disruption of its symmetric shape, Davidovitch points out.

The researchers are now working on new puzzles regarding the formation of crumpled features posed by the experiment.


Story Source:

The above story is based on materials provided by University of Massachusetts at Amherst. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. King, R. D. Schroll, B. Davidovitch, N. Menon. Elastic sheet on a liquid drop reveals wrinkling and crumpling as distinct symmetry-breaking instabilities. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1201201109

Cite This Page:

University of Massachusetts at Amherst. "Physicists discover mechanisms of wrinkle and crumple formation." ScienceDaily. ScienceDaily, 8 June 2012. <www.sciencedaily.com/releases/2012/06/120608135725.htm>.
University of Massachusetts at Amherst. (2012, June 8). Physicists discover mechanisms of wrinkle and crumple formation. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2012/06/120608135725.htm
University of Massachusetts at Amherst. "Physicists discover mechanisms of wrinkle and crumple formation." ScienceDaily. www.sciencedaily.com/releases/2012/06/120608135725.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins