Featured Research

from universities, journals, and other organizations

Physicists discover mechanisms of wrinkle and crumple formation

Date:
June 8, 2012
Source:
University of Massachusetts at Amherst
Summary:
How a featureless sheet develops a complex shape has long remained elusive, but now physicists have identified a fundamental mechanism by which such complex patterns emerge spontaneously.

In recent experiments, Davidovitch and colleagues confirmed their earlier theoretical predictions using an ultra-thin film, just tens of nanometers thick. They say the wrinkle-to-crumple transition reflects a dramatic change called “symmetry breaking” in the distribution of stresses in the sheet.
Credit: UMass Amherst

Smooth wrinkles and sharply crumpled regions are familiar motifs in biological and synthetic sheets, such as plant leaves and crushed foils, say physicists Benny Davidovitch, Narayanan Menon and colleagues at the University of Massachusetts Amherst, but how a featureless sheet develops a complex shape has long remained elusive.

Now, in a cover story of the journal, Proceedings of the National Academy of Sciences, the physicists report that they have identified a fundamental mechanism by which such complex patterns emerge spontaneously.

Davidovitch says they were inspired and moved toward a solution by thinking about how a familiar birthday balloon, made of two circular mylar foils, wrinkles and crumples (two separate processes). The two foils start flat, but when glued together around their edges and injected with helium gas to create higher-than-atmospheric pressure inside, they spontaneously changes shape to accommodate the gas.

"This simple process leads to a fascinating pattern of wrinkles and crumples that emerge spontaneously near the perimeter of each foil," Davidovitch points out. "What we discovered is an unusual sequence of transitions that underlie this and possibly other types of morphological complexity."

In the laboratory, rather than balloons, the researchers including doctoral student Hunter King, who conducted many of the experiments, and postdoctoral researcher Robert Schroll, who carried out theoretical calculations, used microscopically thin films and a drop of water to model the effects they wished to study. They cut a circle of ultra-thin film from a sheet 10,000 times thinner than a piece of paper, only tens of nanometers thick, and place it flat on the water drop nestled in a circular collar, where surface tension holds it in place.

"We then very, very gently inject more and more water into the bubble, very gradually, so it becomes more and more curved without spilling over," says Davidovitch. "When the radius of the drop gets small enough, the thin film starts to develop fine radial wrinkles near its outer perimeter as the water pressure increases If you keep adding pressure, decreasing the radius further, a second transition takes place and the film starts to crumple and to look more like a table cloth, draping with sharp creases over the edge of a flattened top," he adds.

Watching this process through incremental steps, the researchers were able to observe and describe through mathematical formulas how the drop imposes confinement on circles of latitude of the sheet. "The degree of this confinement increases as the drop's radius decreases, and an unusual sequence of transitions can then be observed," says Davidovitch.

With this work the investigators, who had earlier proposed quantitative predictions of wrinkle patterns in ultra-thin sheets by following the principle that such sheets must be free of compression, confirm their theoretical predictions. The current experiments also suggest that the wrinkle-to-crumple transition reflects a dramatic change called "symmetry breaking" in the distribution of stresses in the sheet, rather than just a further disruption of its symmetric shape, Davidovitch points out.

The researchers are now working on new puzzles regarding the formation of crumpled features posed by the experiment.


Story Source:

The above story is based on materials provided by University of Massachusetts at Amherst. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. King, R. D. Schroll, B. Davidovitch, N. Menon. Elastic sheet on a liquid drop reveals wrinkling and crumpling as distinct symmetry-breaking instabilities. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1201201109

Cite This Page:

University of Massachusetts at Amherst. "Physicists discover mechanisms of wrinkle and crumple formation." ScienceDaily. ScienceDaily, 8 June 2012. <www.sciencedaily.com/releases/2012/06/120608135725.htm>.
University of Massachusetts at Amherst. (2012, June 8). Physicists discover mechanisms of wrinkle and crumple formation. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/06/120608135725.htm
University of Massachusetts at Amherst. "Physicists discover mechanisms of wrinkle and crumple formation." ScienceDaily. www.sciencedaily.com/releases/2012/06/120608135725.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins