Featured Research

from universities, journals, and other organizations

Nonlinear optics: Now in the terahertz range

Date:
June 13, 2012
Source:
Technical University of Denmark (DTU)
Summary:
Researchers have recently reported on the direct observation of a nonlinear-optical effect, occurring in the regime of single-cycle pulse of light at terahertz (THz) frequencies. They used a doped semiconductor as an efficient nonlinear medium, where the THz-range optical nonlinearity arises from the response of free-electron plasma to THz electric fields.

As the field strength in the incident THz pulse (the one on the left) grows, the THz pulse transmitted through the semiconductor (the one on the right) experiences a larger time delay due to self-phase modulation.
Credit: DTU

The researchers at DTU Fotonik, Max Planck Institute for Polymer Research -- MPIP (Mainz, Germany), and SLAC Linear Accelerator Laboratory (California, USA) have recently reported on the direct observation of a nonlinear-optical effect, occurring in the regime of single-cycle pulse of light at terahertz (THz) frequencies. In their paper, published in Physical Review B , they used a doped semiconductor as an efficient nonlinear medium, where the THz-range optical nonlinearity arises from the response of free-electron plasma to THz electric fields.

The single-cycle pulses of THz light, propagating through such a medium, experienced an effect called the self-phase modulation (SPM), which led to the nonlinear reshaping and time delay of the THz pulses. The SPM is one of the most important effects in nonlinear optics. It is used in numerous applications, ranging from supercontinuum generation for biophotonics imaging to ultra-high speed optical signal processing in telecom systems.

Single-cycle pulses, irrespective of the frequency range to which they belong, inherently have an extremely broad spectral bandwidth covering many octaves of frequencies. Unlike the single-cycle pulses at optical frequencies, the THz pulses can be easily generated and detected in the time-domain using conventional femtosecond lasers. One of the discoveries in this work was the coexistence of both positive and negative refractive index nonlinearity within the broad spectrum of a single-cycle THz pulse. This is quite a unique observation for nonlinear optics in general, which demonstrates a great potential of using THz pulses as accessible model tools for study of single-cycle nonlinear optical effects.


Story Source:

The above story is based on materials provided by Technical University of Denmark (DTU). Note: Materials may be edited for content and length.


Journal Reference:

  1. Dmitry Turchinovich, Jørn Hvam, Matthias Hoffmann. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor. Physical Review B, 2012; 85 (20) DOI: 10.1103/PhysRevB.85.201304

Cite This Page:

Technical University of Denmark (DTU). "Nonlinear optics: Now in the terahertz range." ScienceDaily. ScienceDaily, 13 June 2012. <www.sciencedaily.com/releases/2012/06/120613102128.htm>.
Technical University of Denmark (DTU). (2012, June 13). Nonlinear optics: Now in the terahertz range. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2012/06/120613102128.htm
Technical University of Denmark (DTU). "Nonlinear optics: Now in the terahertz range." ScienceDaily. www.sciencedaily.com/releases/2012/06/120613102128.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) — The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins