Featured Research

from universities, journals, and other organizations

Gene may link diabetes and Alzheimer's

Date:
June 14, 2012
Source:
City College of New York
Summary:
In recent years it became clear that people with diabetes face an ominous prospect -- a far greater risk of developing Alzheimer's disease. Now researchers have shed light on one reason why. Biologists have discovered that a single gene forms a common link between the two diseases.

In recent years it became clear that people with diabetes face an ominous prospect -- a far greater risk of developing Alzheimer's disease. Now researchers at The City College of New York (CCNY) have shed light on one reason why. Biology Professor Chris Li and her colleagues have discovered that a single gene forms a common link between the two diseases.

Related Articles


They found that the gene, known to be present in many Alzheimer's disease cases, affects the insulin pathway. Disruption of this pathway is a hallmark of diabetes. The finding could point to a therapeutic target for both diseases. The researchers report their finding in the June 2012 issue of the journal Genetics.

"People with type 2 diabetes have an increased risk of dementia. The insulin pathways are involved in many metabolic processes, including helping to keep the nervous system healthy," said Professor Li, explaining why the link is not far-fetched.

Although the cause of Alzheimer's is still unclear, one criterion for diagnosis of the disease after death is the presence of sticky plaques of amyloid protein in decimated portions of patients' brains.

Mutations in the human "amyloid precursor protein" (APP) gene, or in genes that process APP, show up in cases of Alzheimer's that run in families. In the study, Professor Li and her colleagues scrutinized a protein called APL-1, made by a gene in the worm Caenorhabditis elegans (C. elegans ) that happens to be a perfect stand-in for the human Alzheimer's disease gene.

"What we found was that mutations in the worm-equivalent of the APP gene slowed their development, which suggested that some metabolic pathway was disrupted," said Professor Li. "We began to examine how the worm-equivalent of APP modulated different metabolic pathways and found that the APP equivalent inhibited the insulin pathway."

This suggested that the human version of the gene likely plays a role in both Alzheimer's disease and diabetes.

They also found that additional mutations in the insulin pathway reversed the defects of the APP mutation. This helped explain how these genes are functionally linked.

The APL-1 is so important, they found, that "when you knock out the worm-equivalent of APP, the animals die," Li explained. "This tells us that the APP family of proteins is essential in worms, as they are essential in mammals," like us.

Professor Li and her colleagues hope that this new insight will help focus research in ways that might lead to new therapies in the treatment of both Alzheimer's disease and diabetes.

"This is an important discovery, especially as it comes on the heels of the U.S. government's new commitment to treat and prevent Alzheimer's disease by 2025," said Dr. Mark Johnston, editor-in-chief of "Genetics." "We know there's a link between Alzheimer's and diabetes, but until now, it was somewhat of a mystery. This finding could open new doors for treating and preventing both diseases."

The research has identified one link in the chain, an Alzheimer's disease-related protein to the insulin pathway. This may provide insights into why type II diabetes patients are at higher risk for Alzheimer's. However, the protein fragments into many parts, each of which may attach to and signal neurons and other cells along the way. "The big question," said Professor Li, "Is how the amyloid precursor protein and its cleavage products intersect with the insulin pathway."

Each intersection offers a possible target for drugs and other treatment. Professor Li plans to continue down the pathway, mapping its crossroads as she goes.

Professor Li conducted the research with then CUNY Graduate Center -- City College graduate student, Collin Y. Ewald, and research assistant, Daniel A. Raps.

The research was funded by grants from the Alzheimer's Association, the National Institutes of Health (NIH), the National Science Foundation (NSF), and a NIH Research Centers in Minority Institutions grant to The City College of New York.


Story Source:

The above story is based on materials provided by City College of New York. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Y. Ewald, D. A. Raps, C. Li. APL-1, the Alzheimer's Amyloid Precursor Protein in Caenorhabditis elegans, Modulates Multiple Metabolic Pathways Throughout Development. Genetics, 2012; DOI: 10.1534/genetics.112.138768

Cite This Page:

City College of New York. "Gene may link diabetes and Alzheimer's." ScienceDaily. ScienceDaily, 14 June 2012. <www.sciencedaily.com/releases/2012/06/120614130936.htm>.
City College of New York. (2012, June 14). Gene may link diabetes and Alzheimer's. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/06/120614130936.htm
City College of New York. "Gene may link diabetes and Alzheimer's." ScienceDaily. www.sciencedaily.com/releases/2012/06/120614130936.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins