Featured Research

from universities, journals, and other organizations

Mechanism prevents alterations in neuronal production during embryonic development

Date:
June 26, 2012
Source:
Universidad de Barcelona
Summary:
Scientists have discovered a mechanism that prevents alterations in neurogenesis, the process of neuronal formation, during the development of the nervous system in vertebrates. The study relates these distortions to the natural presence of a molecule that inhibits the neuronal formation at the regions adjacent to the tissue suitable for neurogenesis.

Left: altered neurogenic wavefront in the absence of Delta. Right: normal neurogenic wavefront.
Credit: Image courtesy of Universidad de Barcelona

Scientists from the University of Barcelona (UB) in collaboration with a multidisciplinary team from the Spanish National Research Council (CSIC) has discovered a mechanism that prevents alterations in neurogenesis, the process of neuronal formation, during the development of the nervous system in vertebrates. The study, published in the journal Development, relates these distortions to the natural presence of a molecule that inhibits the neuronal formation at the regions adjacent to the tissue suitable for neurogenesis.

Related Articles


Through a theoretical and computational analysis of the retina, scientists have found that lateral inhibition, a process that regulates the generation of neurons in the central nervous system, undergoes alterations at the neurogenic wavefront (i.e. the edge between the regions that generate neurons and the adjacent areas, where neurogenesis has not yet begun).

"The study shows that the absence of the Delta molecule at the adjacent regions reduces the robustness of the neurogenic process, often resulting in an increased production of neurons or in the presence of morphological alterations of the wavefront. These alterations could be catastrophic for the proper development of the nervous system," explains Jos้ Marํa Frade, researcher from the CSIC, at the Cajal Institute.

Lateral inhibition during embryonic development aims to control the amount of neurons that are formed. It consists in cells that inhibit other neighbouring cells, promoting neuronal differentiation. "Neuronal precursor cells expressing high levels of Delta induce inhibitory signals in neighbouring cells. These inhibitory signals reduce the capacity of these cells to express Delta itself and, in turn, facilitate the differentiation of the high Delta-expressing precursors. Thus, the massive generation of neurons is avoided and the orderly production of different types of neurons necessary for brain function is facilitated," explains researcher from the CSIC Sa๚l Ares, who works at the Spanish National Biotechnology Centre.

Previous theoretical studies suggested that the lateral inhibition process can be altered at the neurogenic edges. "However, the importance of this inhibition process had not been appropriately acknowledged. Our study demonstrates the relevance of Delta expression ahead of the neurogenic wavefront, provides predictions and explains developmental alterations resulting from the absence of Delta. It also represents a breakthrough in the theoretical field because it formulates a front propagation mechanism based on self-regulatory mechanisms," points out Marta Iba๑es, researcher from the UB.

According to researchers, this study provides a new concept that will attract the attention of neurobiologists who work both in the development of the nervous system and in several pathologies derived from neuronal development.


Story Source:

The above story is based on materials provided by Universidad de Barcelona. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Formosa-Jordan, M. Ibanes, S. Ares, J. M. Frade. Regulation of neuronal differentiation at the neurogenic wavefront. Development, 2012; 139 (13): 2321 DOI: 10.1242/dev.076406

Cite This Page:

Universidad de Barcelona. "Mechanism prevents alterations in neuronal production during embryonic development." ScienceDaily. ScienceDaily, 26 June 2012. <www.sciencedaily.com/releases/2012/06/120626092627.htm>.
Universidad de Barcelona. (2012, June 26). Mechanism prevents alterations in neuronal production during embryonic development. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2012/06/120626092627.htm
Universidad de Barcelona. "Mechanism prevents alterations in neuronal production during embryonic development." ScienceDaily. www.sciencedaily.com/releases/2012/06/120626092627.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) — Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) — A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins