Featured Research

from universities, journals, and other organizations

Inspired by nature: Paints and coatings containing bactericidal agent nanoparticles combat marine fouling

Date:
July 2, 2012
Source:
Universität Mainz
Summary:
Scientists have discovered that tiny vanadium pentoxide nanoparticles can inhibit the growth of barnacles, bacteria, and algae on surfaces in contact with water, such as ship hulls, sea buoys, or offshore platforms. Their experiments showed that steel plates to which a coating containing dispersed vanadium pentoxide particles had been applied could be exposed to seawater for weeks without the formation of deposits of barnacles, bacteria, and algae.

a, Biofouling at a boat hull. b, knotted wrack, Ascophyllum nodosum. c, Mode of action of bioinspired under water paints: Like the natural enzyme vanadium bromoperoxidase vanadium pentoxid nanoparticles act as a catalyst for the formation of hypobromous acid from bromide ions (contained in sea water) and small amounts of hydrogen peroxide that are formed upon exposure to sun light.
Credit: Tremel research group, JGU

Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have discovered that tiny vanadium pentoxide nanoparticles can inhibit the growth of barnacles, bacteria, and algae on surfaces in contact with water, such as ship hulls, sea buoys, or offshore platforms. Their experiments showed that steel plates to which a coating containing dispersed vanadium pentoxide particles had been applied could be exposed to seawater for weeks without the formation of deposits of barnacles, bacteria, and algae. In comparison, plates that were coated only with the ship's normal paint exhibited massive fouling after exposure to seawater for the same period of time. The discovery could lead to the development of new protective, antifouling coatings and paints that are less damaging to the environment than the ship coatings currently used.

Marine fouling is a problem that costs the shipping industry more than 200 billion dollars per year. The accumulation of organisms such as algae, mussels, and barnacles increases the objects' water resistance and, in consequence, fuel consumption. This means additional costs for shipping companies and, even worse, increased environmental damage due to extra CO2 emissions. Within only a few months, an underwater boat hull can be completely covered and overgrown with organisms. According to Lloyds, this means an increase in fuel consumption of up to 28 percent and about 250 million tons of additional CO2 emissions per year. While it is possible to counteract this effect to some extent by means of the use of antifouling paints, conventional biocides are less effective and can have adverse environmental consequences. In addition, microorganisms can develop resistance to them.

It was one of nature's own defense mechanisms that provided the inspiration for the approach now taken by the team of scientists working under Professor Dr. Wolfgang Tremel of the Institute of Inorganic Chemistry and Analytical Chemistry at JGU. Certain enzymes found in brown and red algae produce halogen compounds that have a biocidal potential. It is assumed that these are synthesized by the algae to protect them against microbial attack and predators. The chemists at Mainz University decided to mimic this process using vanadium pentoxide nanoparticles. According to their article published in Nature Nanotechnology, vanadium pentoxide (V2O5) nanoparticles have "an intrinsic biomimetic bromination activity […] which makes them a practical and cost-efficient alternative for conventional chemical biocides." Vanadium pentoxide functions as a catalyst so that hydrogen peroxide and bromide combine to form small quantities of hypobromous acid, which is highly toxic to many microorganisms and has a pronounced antibacterial effect. The required reactants are present in seawater: This already contains bromide ions, while small quantities of hydrogen peroxide are formed when it is exposed to sunlight.

The process has been demonstrated both under laboratory conditions and in natural seawater. It has only very minimal consequences for the environment because the effect is restricted to micro-surfaces. The metallic oxide is particularly potent when it is present in the form of nanoparticles because then, due to the larger surface area, there is an enhanced catalytic effect.

"Vanadium pentoxide nanoparticles, due to their poor solubility and the fact that they are embedded in the coating, are considerably less toxic to marine life than are the tin- and copper-based active substances used in the commercially available products," explains Wolfgang Tremel. In his view, ships' coatings based on vanadium pentoxide could be a practical and cost-effective alternative to conventional chemical biocides. "Here we have an environmentally-compatible component for a new generation of antifouling paints that employ the natural defense mechanism used by marine organisms."

Ron Wever, the team's Dutch cooperation partner from the University of Amsterdam, has been investigating such natural defense mechanisms for the last 15 years. He suggested adding the enzyme involved, i.e., vanadium haloperoxidase, to antifouling paints. The chemists in Mainz are now working together with Wever to develop vanadium pentoxide nanoparticles. "Vanadium pentoxide particles are considerably cheaper and also more stable than genetically produced enzymes," he adds.

A research group headed by Dr. Klaus Peter Jochum of the Max Planck Institute for Chemistry in Mainz has been conducting experiments to determine whether the use of vanadium pentoxide might have a negative effect on the environment. Using a highly sensitive ICP mass spectrometer, the scientists determined the concentration of vanadium in various samples of seawater that had been exposed to the coated material for different lengths of time. The results showed that levels were only slightly elevated above the normal average vanadium concentration in seawater. It can thus be concluded that only very tiny amounts of vanadium migrate from the coating into seawater and will thus have no negative impact on the environment.


Story Source:

The above story is based on materials provided by Universität Mainz. Note: Materials may be edited for content and length.


Journal Reference:

  1. Filipe Natalio, Rute André, Aloysius F. Hartog, Brigitte Stoll, Klaus Peter Jochum, Ron Wever, Wolfgang Tremel. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nature Nanotechnology, 2012; DOI: 10.1038/NNANO.2012.91

Cite This Page:

Universität Mainz. "Inspired by nature: Paints and coatings containing bactericidal agent nanoparticles combat marine fouling." ScienceDaily. ScienceDaily, 2 July 2012. <www.sciencedaily.com/releases/2012/07/120702133531.htm>.
Universität Mainz. (2012, July 2). Inspired by nature: Paints and coatings containing bactericidal agent nanoparticles combat marine fouling. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2012/07/120702133531.htm
Universität Mainz. "Inspired by nature: Paints and coatings containing bactericidal agent nanoparticles combat marine fouling." ScienceDaily. www.sciencedaily.com/releases/2012/07/120702133531.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) — The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Air Force: $4.2B Saved from Grounding A-10s

Air Force: $4.2B Saved from Grounding A-10s

AP (Apr. 23, 2014) — Speaking about the future of the United States Air Force, Chief of Staff Gen. Mark Welsh says the choice to divest the A-10 fleet was logical and least impactful. (April 23) Video provided by AP
Powered by NewsLook.com
Jets Fuel Jump in Boeing's Revenue

Jets Fuel Jump in Boeing's Revenue

Reuters - Business Video Online (Apr. 23, 2014) — A sharp rise in revenue for commercial jets offset a decline in Boeing's defense business. And a big increase in deliveries lifted profitability. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) — South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins