Featured Research

from universities, journals, and other organizations

A wrinkle in space-time: Math shows how shockwaves could crinkle space

Date:
July 19, 2012
Source:
University of California - Davis
Summary:
Mathematicians have come up with a new way to crinkle up the fabric of space-time -- at least in theory.

Illustration of twisted space-time around Earth.
Credit: NASA

Mathematicians at UC Davis have come up with a new way to crinkle up the fabric of space-time -- at least in theory.

"We show that space-time cannot be locally flat at a point where two shock waves collide," said Blake Temple, professor of mathematics at UC Davis. "This is a new kind of singularity in general relativity."

The results are reported in two papers by Temple with graduate students Moritz Reintjes and Zeke Vogler, respectively, both published in the journal Proceedings of the Royal Society A.

Einstein's theory of general relativity explains gravity as a curvature in space-time. But the theory starts from the assumption that any local patch of space-time looks flat, Temple said.

A singularity is a patch of space-time that cannot be made to look flat in any coordinate system, Temple said. One example of a singularity is inside a black hole, where the curvature of space becomes extreme.

Temple and his collaborators study the mathematics of how shockwaves in a perfect fluid can affect the curvature of space-time in general relativity. In earlier work, Temple and collaborator Joel Smoller, Lamberto Cesari professor of mathematics at the University of Michigan, produced a model for the biggest shockwave of all, created from the Big Bang when the universe burst into existence.

A shockwave creates an abrupt change, or discontinuity, in the pressure and density of a fluid, and this creates a jump in the curvature. But it has been known since the 1960s that the jump in curvature created by a single shock wave is not enough to rule out the locally flat nature of space-time.

Vogler's doctoral work used mathematics to simulate two shockwaves colliding, while Reintjes followed up with an analysis of the equations that describe what happens when shockwaves cross. He found this created a new type of singularity, which he dubbed a "regularity singularity."

What is surprising is that something as mild as interacting waves could create something as extreme as a space-time singularity, Temple said.

Temple and his colleagues are investigating whether the steep gradients in the space-time fabric at a regularity singularity could create any effects that are measurable in the real world. For example, they wonder whether they might produce gravity waves, Temple said. General relativity predicts that these are produced, for example, by the collision of massive objects like black holes, but they have not yet been observed in nature. Regularity singularities could also be formed within stars as shockwaves pass within them, the researchers theorize.

Reintjes, now a postdoctoral scholar at the University of Regensburg, Germany presented the work at the International Congress on Hyperbolic Problems in Padua, in June.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Reintjes, B. Temple. Points of general relativistic shock wave interaction are 'regularity singularities' where space-time is not locally flat. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012; DOI: 10.1098/rspa.2011.0360

Cite This Page:

University of California - Davis. "A wrinkle in space-time: Math shows how shockwaves could crinkle space." ScienceDaily. ScienceDaily, 19 July 2012. <www.sciencedaily.com/releases/2012/07/120719132949.htm>.
University of California - Davis. (2012, July 19). A wrinkle in space-time: Math shows how shockwaves could crinkle space. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2012/07/120719132949.htm
University of California - Davis. "A wrinkle in space-time: Math shows how shockwaves could crinkle space." ScienceDaily. www.sciencedaily.com/releases/2012/07/120719132949.htm (accessed September 1, 2014).

Share This




More Space & Time News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: NASA Captures Solar Flare

Raw: NASA Captures Solar Flare

AP (Sep. 1, 2014) NASA reported the sun emitted a mid-level solar flare, on August 24th. NASA's Solar Dynamics Observatory captured the images of the flare, which erupted on the left side of the sun. (Sept. 1) Video provided by AP
Powered by NewsLook.com
Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins