Featured Research

from universities, journals, and other organizations

Measurement advance could speed innovation in solar devices

Date:
July 26, 2012
Source:
National Institute of Standards and Technology (NIST)
Summary:
A novel measurement system can accurately and quickly measures the energy output of solar power devices. Combining two different techniques and suitable for use in both the lab and the production line, their device could be a boon to manufacturers working on better, more competitive solar energy systems.

NIST measurement advance could speed innovation in solar devices.
Credit: National Institute of Standards and Technology

A new versatile measurement system devised by researchers at the National Institute of Standards and Technology (NIST) accurately and quickly measures the electric power output of solar energy devices, capabilities useful to researchers and manufacturers working to develop and make next-generation solar energy cells.

Innovative devices that convert sunlight to electric power more efficiently and cost effectively than the current generation of solar cell technology are the objects of a global pursuit -- means to reducing fossil-fuel consumption and to securing pole position in the competition for fast-growing international markets for clean energy sources.

As reported in the journal Applied Optics, the NIST team has combined 32 LEDs -- each generating light from different segments of the solar spectrum -- and other off-the-shelf equipment with their custom-made technologies to build a system that measures the wavelength-dependent quantum efficiency of solar devices over a relatively large area.

Anticipated advantages over current approaches -- most of which use incandescent lamps or xenon arc and other types of discharge lamps -- are greater speed and ease of operation, more uniform illumination, and a service life that is about 10 times longer.

The new NIST system for measuring spectral response easily accommodates two unique but complementary methods for determining how much electric current a solar, or photovoltaic (PV), device generates when hit by a standard amount of sunlight. Both methods are straightforward, and they use the same hardware setup.

With either method, the automated system produces measurements more rapidly than current instruments used to simulate solar radiation and characterize how efficiently a device converts light energy to electric energy.

One method, which activates the LED lights sequentially, is less subject to interference than the other technique, and yields a spectral response measurement in about 6 minutes. With the other method, all 32 LEDs are activated simultaneously, but each generates pulses of light at a different rate. The solar response of a PV device over the entire LED-blended spectrum can be determined in about 4 seconds.

Though more susceptible to interference, the faster method has potential for in-line manufacturing tests for ensuring quality, the researchers write.

The new system represents a major stride toward a technical goal set by a group of solar energy experts convened by NIST in late 2010. "To accelerate all types of PV development and lower costs through more accurate assessment of performance," these experts set the goal to achieve spectral response measurements in fewer than 10 minutes.

While the new system beats the time requirement, the NIST team must push their technology further to match related targets that are part of the goal. Their to-do list includes matching or exceeding the energy intensity of the sun, broadening the LED-synthesized spectrum to include the infrared portion of the sun's output, and consistently achieving measurement results with uncertainties of less than 1 percent.

With their work to date, however, the NIST researchers have demonstrated that LEDs are now "technologically viable" for use in solar simulators and for characterizing PV and other photoelectric devices, says NIST physicist Behrang Hamadani.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Behrang H. Hamadani, John Roller, Brian Dougherty, Howard W. Yoon. Versatile light-emitting-diode-based spectral response measurement system for photovoltaic device characterization. Applied Optics, 2012; 51 (19): 4469 DOI: 10.1364/AO.51.004469

Cite This Page:

National Institute of Standards and Technology (NIST). "Measurement advance could speed innovation in solar devices." ScienceDaily. ScienceDaily, 26 July 2012. <www.sciencedaily.com/releases/2012/07/120726135226.htm>.
National Institute of Standards and Technology (NIST). (2012, July 26). Measurement advance could speed innovation in solar devices. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2012/07/120726135226.htm
National Institute of Standards and Technology (NIST). "Measurement advance could speed innovation in solar devices." ScienceDaily. www.sciencedaily.com/releases/2012/07/120726135226.htm (accessed September 18, 2014).

Share This



More Earth & Climate News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins