Featured Research

from universities, journals, and other organizations

Understanding the biological and ecological implications of safe nanotechnology

Date:
August 6, 2012
Source:
Clemson University
Summary:
New research shows how the soft nanomaterial dendrimer can be used to remediate the environment from potentially toxic nanomaterials.

Fullerenol – a 60 carbon molecule in the shape of a buckyball and functionalized with hydroxyl groups – was used as a model system.
Credit: Image courtesy of Clemson University

Nanoscale science and technology has seen exciting advances recently in drug delivery, electronics, energy and environmental applications. According to international scientific conventions, nanomaterials are those whose at least one dimension is less than or equal to 10-9 m. At the same time, there is a great possibility for nanomaterials to enter ecosystems at the points of use or disposal, which could lead to negative environmental implications.

Related Articles


Our recent paper, "Dendrimer-fullerenol soft-condensed nanoassembly" published in The Journal of Physical Chemistry C, showed how the soft nanomaterial dendrimer can be used to remediate the environment from potentially toxic nanomaterials. Here, we used fullerenol -- a 60 carbon molecule in the shape of a buckyball and functionalized with hydroxyl groups -- as a model system. Such an assembly also has implications for drug delivery.

We found that the assemblies of dendrimers and fullerenols were strong, spontaneous, and thermodynamically favorable at neutral water pH and ambient temperature and pressure.

Dendrimers are highly branched, polymeric macromolecules with a high degree of surface functionalities. Their branching determines their generation number (G) -- the higher the generation, the greater the degree of surface functionalities. We used both G1 and G4 poly(amidoamine) (PAMAM) dendrimers and found that both these dendrimers hosted one fullerenol per primary amine on the dendrimer surfaces. However, G4 PAMAM dendrimers hosted fullerenols 40 times better than G1, simply because of their higher degree of surface functionalities. Based on our findings, we recommended proper loading capacities of fullerenols for G1 and G4 dendrimers in drug delivery and environmental remediation.

With the advent of new technologies, the public often becomes skeptical of their implications on the environment. In our group, we strive to understand the biological and ecological implications of safe nanotechnology. This article was a part of that effort. Fullerenols have shown great potential in nanomedicine as well as in electronics. Dendrimers of generations five and below have been proven biocompatible, and have been used as MRI contrast agents and drug delivery vehicles. In this paper we provided a proof-of-concept on the use of a benign dendritic technology as a robust drug delivery vehicle and a solution to environmental remediation of discharged nanomaterials.

Our group, led by my advisor Dr. Pu-Chun Ke and funded by the National Science Foundation, has delved into a crucial topic of frontier research termed "nanoparticle-protein corona". In short, nanoparticles do not interact directly with living systems but are often coated with biological fluids in the form of a protein corona. Another direction in our group, through collaboration between Dr. Ke and Dr. David Ladner in Clemson's Department of Environmental Engineering and Earth Sciences and funded by the U.S. Environmental Protection Agency is to employ dendritic polymers for remediating oil spills.

Priyanka Bhattacharya is a PhD student at Clemson University's College of Engineering and Science.


Story Source:

The above story is based on materials provided by Clemson University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Priyanka Bhattacharya, Seung Ha Kim, Pengyu Chen, Ran Chen, Anne M. Spuches, Jared M. Brown, Monica H. Lamm, Pu Chun Ke. Dendrimer–Fullerenol Soft-Condensed Nanoassembly. The Journal of Physical Chemistry C, 2012; 120713111521004 DOI: 10.1021/jp3036692

Cite This Page:

Clemson University. "Understanding the biological and ecological implications of safe nanotechnology." ScienceDaily. ScienceDaily, 6 August 2012. <www.sciencedaily.com/releases/2012/08/120806102230.htm>.
Clemson University. (2012, August 6). Understanding the biological and ecological implications of safe nanotechnology. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2012/08/120806102230.htm
Clemson University. "Understanding the biological and ecological implications of safe nanotechnology." ScienceDaily. www.sciencedaily.com/releases/2012/08/120806102230.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Voice-Controlled GPS Helmet to Help Bikers

Voice-Controlled GPS Helmet to Help Bikers

Reuters - Innovations Video Online (Apr. 1, 2015) Motorcyclists will no longer have to rely on maps or GPS systems, both of which require riders to take their eyes off the road, once a new Russian smart helmet goes on sale this summer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Reuters - Innovations Video Online (Apr. 1, 2015) Israeli scientists says laser bonding of tissue allows much faster healing and less scarring. Amy Pollock has more. Video provided by Reuters
Powered by NewsLook.com
7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com
Dutch Architects Show Off 3D House-Building Prowess

Dutch Architects Show Off 3D House-Building Prowess

Reuters - Innovations Video Online (Mar. 31, 2015) Dutch architects are constructing a 3D-printed canal-side home, which they hope will spark an environmental revolution in the house-building industry. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins