Featured Research

from universities, journals, and other organizations

Division of labor offers insight into the evolution of multicellular life

Date:
August 7, 2012
Source:
Michigan State University
Summary:
Dividing tasks among different individuals is a more efficient way to get things done, whether you are an ant, a honeybee or a human. A new study suggests that this efficiency may also explain a key transition in evolutionary history, from single-celled to multi-celled organisms.

Dividing tasks among different individuals is a more efficient way to get things done, whether you are an ant, a honeybee or a human.

Related Articles


A new study by researchers at Michigan State University's BEACON Center for the Study of Evolution in Action suggests that this efficiency may also explain a key transition in evolutionary history, from single-celled to multi-celled organisms.

The results, which can be found in the current issue of the Proceedings of the National Academy of Sciences, demonstrate that the cost of switching between different tasks gives rise to the evolution of division of labor in digital organisms. In human economies, these costs could be the mental shift or the travel time required to change from activity to another.

Using the digital evolution platform Avida, self-replicating computer programs, a the team imposed a time cost on the organisms that had to perform different computational tasks to get rewards, said Heather Goldsby, who led the study and is now a postdoctoral researcher at the University of Washington.

"More complex tasks received more rewards," she said. "They evolved to perform these more efficiently by using the results of simpler tasks solved by neighboring organisms and sent to them in messages."

In this way, the organisms were breaking the tasks down into smaller computational problems and dividing them up among each other.

The division of labor did not come about by bringing together individuals with different abilities -- each member of a community was genetically identical, in the same way that all of the cells in a human body contain the same genetic material. Instead, the organisms had to have flexible behavior and a communication system that allowed them to coordinate tasks.

The most surprising result was that the organisms evolved to become dependent on each other.

"The organisms started expecting each other to be there, and we tested them in isolation, they could no longer make copies of themselves," said Charles Ofria, MSU associate professor of computer science and engineering.

Ben Kerr at the University of Washington and Ann Dornhaus with the University of Arizona contributed to this study. The research was funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Heather J. Goldsby, Anna Dornhaus, Benjamin Kerr, and Charles Ofria. Task-switching costs promote the evolution of division of labor and shifts in individuality. PNAS, August 7, 2012 DOI: 10.1073/pnas.1202233109

Cite This Page:

Michigan State University. "Division of labor offers insight into the evolution of multicellular life." ScienceDaily. ScienceDaily, 7 August 2012. <www.sciencedaily.com/releases/2012/08/120807132211.htm>.
Michigan State University. (2012, August 7). Division of labor offers insight into the evolution of multicellular life. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/08/120807132211.htm
Michigan State University. "Division of labor offers insight into the evolution of multicellular life." ScienceDaily. www.sciencedaily.com/releases/2012/08/120807132211.htm (accessed October 25, 2014).

Share This



More Fossils & Ruins News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Fossil Treasures at Risk in Morocco Desert Town

Fossil Treasures at Risk in Morocco Desert Town

AFP (Oct. 23, 2014) Hundreds of archeological jewels in and around the town of 30,000 people prompt geologists and archeologists to call the Erfoud area "the largest open air fossil museum in the world". Duration: 02:17 Video provided by AFP
Powered by NewsLook.com
Oldest Bone Ever Sequenced Shows Human/Neanderthal Mating

Oldest Bone Ever Sequenced Shows Human/Neanderthal Mating

Newsy (Oct. 23, 2014) A 45,000-year-old thighbone is showing when humans and neanderthals may have first interbred and revealing details about our origins. Video provided by Newsy
Powered by NewsLook.com
Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Newsy (Oct. 23, 2014) You've probably seen some weird-looking dinosaurs, but have you ever seen one this weird? It's worth a look. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins