Featured Research

from universities, journals, and other organizations

A new energy source: Major advance made in generating electricity from wastewater

Date:
August 13, 2012
Source:
Oregon State University
Summary:
Engineers have made a breakthrough in the performance of microbial fuel cells that can produce electricity directly from wastewater, opening the door to a future in which waste treatment plants not only will power themselves while cleaning sewage, but will sell excess electricity.

Hong Liu, an engineer at Oregon State University, has developed greatly improved new methods to produce electricity from the processing of wastewater.
Credit: Photo courtesy of Oregon State University

Engineers at Oregon State University have made a breakthrough in the performance of microbial fuel cells that can produce electricity directly from wastewater, opening the door to a future in which waste treatment plants not only will power themselves, but will sell excess electricity.

The new technology developed at OSU can now produce 10 to 50 more times the electricity, per volume, than most other approaches using microbial fuel cells, and 100 times more electricity than some.

Researchers say this could eventually change the way that wastewater is treated all over the world, replacing the widely used "activated sludge" process that has been in use for almost a century. The new approach would produce significant amounts of electricity while effectively cleaning the wastewater.

The findings have just been published in Energy and Environmental Science, a professional journal, in work funded by the National Science Foundation.

"If this technology works on a commercial scale the way we believe it will, the treatment of wastewater could be a huge energy producer, not a huge energy cost," said Hong Liu, an associate professor in the OSU Department of Biological and Ecological Engineering. "This could have an impact around the world, save a great deal of money, provide better water treatment and promote energy sustainability."

Experts estimate that about 3 percent of the electrical energy consumed in the United States and other developed countries is used to treat wastewater, and a majority of that electricity is produced by fossil fuels that contribute to global warming.

But the biodegradable characteristics of wastewater, if tapped to their full potential, could theoretically provide many times the energy that is now being used to process them, with no additional greenhouse emissions.

OSU researchers reported several years ago on the promise of this technology, but at that time the systems in use produced far less electrical power. With new concepts -- reduced anode-cathode spacing, evolved microbes and new separator materials -- the technology can now produce more than two kilowatts per cubic meter of liquid reactor volume. This amount of power density far exceeds anything else done with microbial fuel cells.

The system also works better than an alternative approach to creating electricity from wastewater, based on anaerobic digestion that produces methane. It treats the wastewater more effectively, and doesn't have any of the environmental drawbacks of that technology, such as production of unwanted hydrogen sulfide or possible release of methane, a potent greenhouse gas.

The OSU system has now been proven at a substantial scale in the laboratory, Liu said, and the next step would be a pilot study. Funding is now being sought for such a test. A good candidate, she said, might initially be a food processing plant, which is a contained system that produces a steady supply of certain types of wastewater that would provide significant amounts of electricity.

Continued research should also find even more optimal use of necessary microbes, reduced material costs and improved function of the technology at commercial scales, OSU scientists said.

Once advances are made to reduce high initial costs, researchers estimate that the capital construction costs of this new technology should be comparable to that of the activated sludge systems now in widespread use today -- and even less expensive when future sales of excess electricity are factored in.

This technology cleans sewage by a very different approach than the aerobic bacteria used in the past. Bacteria oxidize the organic matter and, in the process, produce electrons that run from the anode to the cathode within the fuel cell, creating an electrical current. Almost any type of organic waste material can be used to produce electricity -- not only wastewater, but also grass straw, animal waste, and byproducts from such operations as the wine, beer or dairy industries.

The approach may also have special value in developing nations, where access to electricity is limited and sewage treatment at remote sites is difficult or impossible as a result.

The ability of microbes to produce electricity has been known for decades, but only recently have technological advances made their production of electricity high enough to be of commercial use.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yanzhen Fan, Sun-Kee Han, Hong Liu. Improved performance of CEA microbial fuel cells with increased reactor size. Energy & Environmental Science, 2012; 5 (8): 8273 DOI: 10.1039/C2EE21964F

Cite This Page:

Oregon State University. "A new energy source: Major advance made in generating electricity from wastewater." ScienceDaily. ScienceDaily, 13 August 2012. <www.sciencedaily.com/releases/2012/08/120813155525.htm>.
Oregon State University. (2012, August 13). A new energy source: Major advance made in generating electricity from wastewater. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2012/08/120813155525.htm
Oregon State University. "A new energy source: Major advance made in generating electricity from wastewater." ScienceDaily. www.sciencedaily.com/releases/2012/08/120813155525.htm (accessed September 2, 2014).

Share This




More Earth & Climate News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Iceland Lowers Aviation Alert on Volcano

Iceland Lowers Aviation Alert on Volcano

AFP (Sep. 1, 2014) Iceland has lowered its aviation alert on its largest volcano after a fresh eruption on a nearby lava field prompted authorities to enforce a flight ban for several hours. Duration: 01:07 Video provided by AFP
Powered by NewsLook.com
Lightning Hurts 3 on NYC Beach

Lightning Hurts 3 on NYC Beach

AP (Sep. 1, 2014) A lightning strike injured three people on a New York City beach on Sunday. The storms also delayed flights and interrupted play at the US Open tennis tournament. (Sept. 1) Video provided by AP
Powered by NewsLook.com
Thailand Totters Towards Waste Crisis

Thailand Totters Towards Waste Crisis

AFP (Sep. 1, 2014) Fears are mounting in Bangkok that poor planning and lax law enforcement are tipping Thailand towards a waste crisis. Duration: 01:21 Video provided by AFP
Powered by NewsLook.com
Melting Ice Shelves Drive Rapid Antarctic Sea Level Rise

Melting Ice Shelves Drive Rapid Antarctic Sea Level Rise

Newsy (Sep. 1, 2014) A study of almost 20 years' worth of satellite images shows Antarctic sea levels are on the rise as ice shelves continue to melt. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins