Featured Research

from universities, journals, and other organizations

Fueling the future with renewable gasoline and diesel

Date:
August 20, 2012
Source:
American Chemical Society (ACS)
Summary:
A new process for converting municipal waste, algae, corn stalks and similar material to gasoline, diesel and jet fuel is showing the same promise in larger plants as it did in laboratory-scale devices, the developers have reported.

A new process for converting municipal waste, algae, corn stalks and similar material to gasoline, diesel and jet fuel is showing the same promise in larger plants as it did in laboratory-scale devices, the developers reported in Philadelphia at the 244th National Meeting & Exposition of the American Chemical Society (ACS) on August 20.

"These results are essential in establishing the credibility of a process that may seem too good to be within the realm of possibility," said Martin Linck, Ph.D. "However, we are moving steadily toward having multiple demonstration-scale facilities in operation by 2014, with each facility producing a range of 3,500-17,500 gallons of fuel a day from non-food plant material. We will be designing commercial-scale facilities that could produce as much as 300,000 gallons per day from the same kinds of feedstocks."

The technology, termed Integrated Hydropyrolysis and Hydroconversion (IH2), already has the credibility of its developer, the Gas Technology Institute (GTI), where Linck is a scientist. Located in Des Plaines, Ill, GTI is a nonprofit energy technology research organization whose accomplishments during the last 70 years include nearly 500 products, 750 licenses and more than 1,200 associated patents.

IH2 technology involves use of internally generated hydrogen and a series of proprietary catalysts, which jump-start chemical reactions that otherwise would happen slowly or not at all. The process uses as its raw material, or "feedstock," virtually any kind of nonfood biomass material -- including wood, cornstalks and cobs, algae, aquatic plants and municipal solid waste ― and produces gasoline, jet fuel or diesel fuel.

Linck said it differs from other biofuel technologies in producing a finished, ready-to-use liquid hydrocarbon fuel, rather than crude intermediate substances or substances that contain unwanted oxygen, which must be further processed and upgraded to meet specifications for transportation fuels. He cited other advantages of the IH2 technology, including flexibility to use a broad range of feedstocks and mixtures of feedstocks from different sources; the use of existing technology and equipment, which keeps its cost low; and production of 90 percent less greenhouse gas per gallon than fossil fuels. CO2 is the major greenhouse gas in this case. The process does not require external hydrogen gas since it produces its own directly from the biomass feed ― a key advantage because most hydrogen gas today is made from natural gas or coal.

Based on assessments by the U.S. Department of Energy's National Renewable Energy Laboratory in Golden, Colo., IH2 technology has the capability to produce gasoline at a cost of less than $2.00 per gallon, Linck said.

GTI is currently operating two pilot plants to test and refine the process. Both use wood, corn stalks and leaves or algae. The smaller plant has a capacity of just one pound of biomass per hour, and can produce 72-157 gallons of fuel per ton of dry, ash-free feedstock, depending on feedstock type. The second plant can handle more than 100 pounds of biomass per hour and is designed to operate continuously, like a commercial facility. Linck's ACS presentation focused on experimental descriptions and yield data, demonstrating that the performance of the larger, continuously operated plant is in line with results obtained on the smaller plant.

Linck said GTI has licensed the IH2 technology to CRI Catalyst Company (CRI), in Houston, Texas. CRI has exclusive sub-licensing rights to the process and is working with multiple customers wishing to build several demonstration units that can convert between 40 and 200 tons of biomass a day.

GTI anticipates full-scale commercial plants converting 2,000 tons a day will be operating by 2014. Such a plant could produce more than 300,000 gallons of fuel a day, if the larger scale plants operate at the same efficiency as the pilot plants.

"Full commercial scale will be dependent on client location and feedstock specifics," Linck said. "Our preliminary engineering estimates are using 2,000 ton per day of feedstock, but this will depend on feedstock type. For example, municipal solid waste plants may be smaller, and plants converting wood may be larger.

GTI's funding and other support has come from the U.S. Department of Energy (EERE Office of Biomass Program), CRI Catalyst Company, Cargill, Johnson Timber Corporation, Parabel, Aquaflow Bionomic Corporation, Blue Marble Biomaterials, National Renewable Energy Laboratory and Michigan Technological University.


Story Source:

The above story is based on materials provided by American Chemical Society (ACS). Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society (ACS). "Fueling the future with renewable gasoline and diesel." ScienceDaily. ScienceDaily, 20 August 2012. <www.sciencedaily.com/releases/2012/08/120820121046.htm>.
American Chemical Society (ACS). (2012, August 20). Fueling the future with renewable gasoline and diesel. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2012/08/120820121046.htm
American Chemical Society (ACS). "Fueling the future with renewable gasoline and diesel." ScienceDaily. www.sciencedaily.com/releases/2012/08/120820121046.htm (accessed August 23, 2014).

Share This




More Matter & Energy News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is It a Plane? No, It's a Hoverbike

Is It a Plane? No, It's a Hoverbike

Reuters - Business Video Online (Aug. 22, 2014) UK-based Malloy Aeronautics is preparing to test a manned quadcopter capable of out-manouvering a helicopter and presenting a new paradigm for aerial vehicles. A 1/3-sized scale model is already gaining popularity with drone enthusiasts around the world, with the full-sized manned model expected to take flight in the near future. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins