Featured Research

from universities, journals, and other organizations

How ocean currents affect global climate becoming better understood

Date:
August 27, 2012
Source:
Florida State University
Summary:
Oceanographers have developed a "new paradigm" for describing how the world's oceans circulate -- and with it they may help reshape science's understanding of the processes by which wind, water, sunlight and other factors interact and influence the planet's climate.

Florida State University Professor of Physical Oceanography Kevin Speer uses a rotating table to simulate the oceans’ movements and study the Antarctic circumpolar current.
Credit: Image courtesy of Florida State University

Florida State University oceanographer Kevin Speer has a "new paradigm" for describing how the world's oceans circulate -- and with it he may help reshape science's understanding of the processes by which wind, water, sunlight and other factors interact and influence the planet's climate.

A Florida State University professor of oceanography with a passion for teaching, Speer and a colleague recently published a significant paper in the journal Nature Geoscience.

Working with John Marshall, an oceanography professor at the Massachusetts Institute of Technology, Speer reviewed -- or essentially synthesized -- vast amounts of previous data on ocean circulation (including their own earlier papers). As a result, they have created what Speer calls a new paradigm in the study of ocean currents on a global scale.

Here's how it works: Basically, the oceans, together with the atmosphere, rebalance heat on the planet. The sun shines on Earth and heats up the tropics more than the poles. Near the poles, the ocean is cold and the water sinks; near the equator, the surface of the ocean is inviting and warm -- and floats on top of the colder deep water.

So the question is this: Where does the water that goes down come back up?

Speer, Marshall and other oceanographers now believe that it comes back up in the Southern Ocean surrounding Antarctica -- not as much in the warm oceans as had been previously thought.

"We're not saying that nothing comes up in the rest of the World Ocean, just that the main thrust is in the Southern Ocean," Speer said. "To a large extent it's driven by the wind."

Very strong winds, to be precise.

In the rough waters around Antarctica, sailors call those winds the "Roaring Forties" and the "Furious Fifties." They originate near the Equator, where hot air rises and then is pushed toward the North and South poles by cooler air that rushes in to take its place.

The resulting "eddy-driven upwelling" in the Southern Ocean, as Speer characterizes it, may in fact describe the most important process to date that helps scientists understand the role of the ocean and climate.

Speer, who holds a doctorate in physical oceanography from the Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program, spent years living in France as an oceanographic researcher for a French governmental agency. (Yes, he's fluent in French.)

Today, from his office on the Florida State campus, Speer serves as interim director of the Geophysical Fluid Dynamics Institute, a warren of intriguing laboratories just a few steps outside his door. It is there that Speer helps students and postdoctoral researchers learn about how climate works.

The laboratory's equipment includes a large, vintage rotating table designed nearly a half-century ago by the lab's founder, Florida State meteorology Professor Richard Pfeffer. (The device may be old, but it's one of the biggest and best in the United States, Speer says). Here students can recreate the ocean's churning and study natural phenomena such as the Antarctic circumpolar current.

Speer and his students have been studying ocean currents thanks to $2.5 million in funding from a larger $10 million National Science Foundation grant that FSU shares with eight other universities and institutions worldwide. Research has included releasing tracers and floats into the ocean to study the mixing and spreading of currents.

One of Speer's graduate students, Druv Balwada, recently took part in a joint U.S.-United Kingdom research program to study ocean currents aboard a ship in the Southern Ocean.


Story Source:

The above story is based on materials provided by Florida State University. The original article was written by Elizabeth Bettendorf. Note: Materials may be edited for content and length.


Journal Reference:

  1. John Marshall, Kevin Speer. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience, 2012; 5 (3): 171 DOI: 10.1038/ngeo1391

Cite This Page:

Florida State University. "How ocean currents affect global climate becoming better understood." ScienceDaily. ScienceDaily, 27 August 2012. <www.sciencedaily.com/releases/2012/08/120827094213.htm>.
Florida State University. (2012, August 27). How ocean currents affect global climate becoming better understood. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2012/08/120827094213.htm
Florida State University. "How ocean currents affect global climate becoming better understood." ScienceDaily. www.sciencedaily.com/releases/2012/08/120827094213.htm (accessed July 22, 2014).

Share This




More Earth & Climate News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
Spectacular Lightning Storm Hits London

Spectacular Lightning Storm Hits London

AFP (July 19, 2014) A spectaCular lightning storm struck the UK overnight Friday. Images of lightning strikes over the Shard and Tower Bridge in central London. Duration: 00:23 Video provided by AFP
Powered by NewsLook.com
A Centuries' Old British Tradition Is Far from a Swan Song

A Centuries' Old British Tradition Is Far from a Swan Song

AFP (July 19, 2014) As if it weren't enough that the Queen is the Sovereign of the UK and 15 other Commonwealth realms, she is also the owner of all Britain's unmarked swans. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: High Winds Push Growing Washington Widlfire

Raw: High Winds Push Growing Washington Widlfire

AP (July 19, 2014) Pushed by howling, erratic winds, a massive wildfire in north-central Washington was growing rapidly and burning in new directions Saturday. (July 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins