Featured Research

from universities, journals, and other organizations

A new look at proteins in living cells

Date:
August 28, 2012
Source:
Arizona State University
Summary:
Scientists have devised a new technique for examining the binding kinetics of membrane proteins.

Figure 1a: Schematic illustration of the experimental set-up for surface plasmon resonance microscopy. A polarized laser beam is directed onto a gold-coated glass coverslip through an oil-immersion objective to create SPR on the gold surface, which is imaged with a CCD camera. 1b: From the bottom up, examples of bright-field, fluorescence (FL) and SPR images, respectively.
Credit: Image courtesy of Arizona State University

Proteins adorning the surfaces of human cells perform an array of essential functions, including cell signaling, communication and the transport of vital substances into and out of cells. They are critical targets for drug delivery and many proteins are now being identified as disease biomarkers -- early warning beacons announcing the pre-symptomatic presence of cancers and other diseases.

While study of the binding properties of membrane proteins is essential, detailed analysis of these complex entities is tricky. Now, Nongjian (NJ) Tao, Professor of Electrical Engineering, and director of the Center for Bioelectronics and Biosensors at Arizona State University's Biodesign Institute has devised a new technique for examining the binding kinetics of membrane proteins.

"This is a very important but very difficult problem to solve," Tao notes. "We demonstrate a new method of approaching the issue, which provides a quantitative analysis of protein interactions on the surface of a cell."

The technique -- known as SPR microscopy -- holds the potential to simplify the study of membrane proteins, thereby streamlining the development of new drugs, aiding the identification of diagnostic biomarkers and improving the understanding of cell-pathogen interactions.

The group's results appear in this week's advanced online issue of the journal Nature Chemistry.

Typically, proteins attached to or embedded in the cell membrane's lipid bilayer are either tagged with fluorescent markers or extracted from their locations, purified and immobilized on a glass surface in protein microarrays. These efforts may not accurately reflect native configuration and function.

Membrane proteins are complex structures whose subtle performance is often related to alterations in conformation and the particular binding kinetics at work. Existing techniques using florescent markers have been applied to pinpoint binding events, but these only permit the visualization of the protein before and after binding, omitting the dynamic processes evolving over time. Further, the use of fluorescent labels to tag protein molecules can interfere with the processes researchers hope to observe.

Alternately, proteins are extracted, purified and affixed to microarray slides -- a labor-intensive process that removes proteins from their native environment, potentially affecting the shapes they naturally assume in situ and/or altering protein function.

In the current study, a label-free imaging technique is applied in situ to membrane proteins, which are visualized using a property known as surface plasmon resonance. This effect occurs when polarized light strikes the surface of a glass slide coated with a thin metallic film of gold. Under proper conditions of wavelength, polarization and incident angle, free electrons in the metal film absorb incident photons, converting them into plasmon waves, which propagate much like waves in water.

When nanoscale phenomena, including membrane proteins, interact and disrupt plasmon waves, they cause a measurable change in light reflectivity, which the new microscopy method converts into an image. (Figure 1a illustrates the basic setup of this technique.)

Surface plasmon resonance had already been applied to extracted proteins to study binding kinetics, though Tao explains that many steps are required and proteins may lose their proper conformational characteristics. This is particularly true for proteins normally embedded in a cell membrane's lipid matrix.

Another important consideration for the study of membrane proteins is the fact that that they arrange themselves heterogeneously across membrane surfaces and modify their distribution during various cellular activities. This behavior is particularly important during a process known as chemotaxis, when cells direct their movements under the influence of chemicals in the surrounding environment. For this reason, a tool allowing for both spatial and temporal study of membrane protein distribution in real time is highly desirable.

Tao's method uses surface plasmon resonance to provide high-resolution spatial and temporal information, and also allows for simultaneous optical and fluorescence observation of the sample, combining the advantages of both label-based and label-free methods.

High spatial resolution proved particularly useful for observing the ways polarized membrane proteins (bearing hydrophobic and hydrophilic regions) rearrange themselves, assisting cell migration directed by surrounding chemicals. The phenomenon also plays an important role during immune recognition. Using SPR microscopy, the spatial distribution of membrane proteins in single cells during chemotaxis could be mapped in detail for the first time, using a chemoattractant to induce cell migration.

Cells for study are cultured directly on a gold-coated slide, which can be subjected to simultaneous bright-field, florescent and SPR imaging. A liquid containing binding ligands is then applied over cells and the binding events with cell surface proteins monitored with SPR.

The technique permits millisecond resolution of temporal events and sub-micron scale analysis of spatial distribution. (See Figure 1b). In the current study, the method examined the binding of membrane glycoproteins with lectin ligands, the spatial distribution of membrane receptor molecules and membrane protein polarization and redistribution events.

The versatility of the new method, allowing for simultaneous imaging in optical, fluorescent and SPR modes, promises to significantly expand the study of membrane proteins in their native state, improving the understanding of protein binding kinetics and speeding the development of drugs targeting membrane proteins.

Tao stresses that such techniques -- by more closely approximating in vivo conditions -- provide a valuable window into biological processes relevant to health and disease: "Cells are different from tissues which are different from human beings, but at least now we can move from a system on the surface of a glass slide to an actual cell surface."


Story Source:

The above story is based on materials provided by Arizona State University. The original article was written by Richard Harth. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wei Wang, Yunze Yang, Shaopeng Wang, Vinay J. Nagaraj, Qiang Liu, Jie Wu, Nongjian Tao. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells. Nature Chemistry, 2012; DOI: 10.1038/nchem.1434

Cite This Page:

Arizona State University. "A new look at proteins in living cells." ScienceDaily. ScienceDaily, 28 August 2012. <www.sciencedaily.com/releases/2012/08/120828104810.htm>.
Arizona State University. (2012, August 28). A new look at proteins in living cells. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2012/08/120828104810.htm
Arizona State University. "A new look at proteins in living cells." ScienceDaily. www.sciencedaily.com/releases/2012/08/120828104810.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins