Featured Research

from universities, journals, and other organizations

Arizona's Sun Corridor: White roofs can combat urban heat islands, but not without impact on regional hydroclimate

Date:
September 7, 2012
Source:
Arizona State University
Summary:
A team of researchers in Arizona has found that warming resulting from megapolitan expansion is seasonally dependent, with greatest warming occurring during summer and least during winter. Among the most practical ways to combat urbanization-induced warming -- the painting of building's roofs white -- was found to disrupt regional hydroclimate, highlighting the need for evaluation of tradeoffs associated with combating urban heat islands.

A team of researchers from Arizona State University have found that warming resulting from megapolitan expansion is seasonally dependent, with greatest warming occurring during summer and least during winter. Among the most practical ways to combat urbanization-induced warming -- the painting of building's roofs white -- was found to disrupt regional hydroclimate, highlighting the need for evaluation of tradeoffs associated with combating urban heat islands (UHI).

"We found that raising the reflectivity of buildings by painting their roofs white is an effective way of reducing higher average temperatures caused by urban expansion," said Matei Georgescu, an assistant professor in ASU's School of Geographical Sciences and Urban Planning. "However, increased reflectivity also modifies hydroclimatic processes and, in the case of the 'Sun Corridor,' can lead to a significant reduction of rainfall. Our maximum Sun Corridor expansion scenario leads to a 12% reduction in rainfall, averaged across the entire state. Painting roofs white leads to an additional 4% reduction in rainfall."

The research is presented in the paper, "Seasonal hydroclimatic impacts of Sun Corridor expansion," published in the Sept. 7, 2012 issue of Environmental Research Letters. Georgescu, the lead author of the paper, is joined by Alex Mahalov, The Wilhoit Foundation Dean's Distinguished Professor in the School of Mathematical and Statistical Sciences at ASU, and Mohamed Moustaoui, an associate professor in ASU's School of Mathematical and Statistical Sciences.

The paper focuses on Arizona's Sun Corridor, the most rapidly growing megapolitan area in the United States. Located in a semi-arid environment, the Sun Corridor is composed of four metropolitan areas: Phoenix, Tucson, Prescott and Nogales. With a population projection expected to exceed 9 million people by 2040, the rapidly expanding megapolitan offers the opportunity to identify tradeoffs focused on sustainable expansion of the built environment.

The authors utilized 2050 projections of Sun Corridor growth developed by the Maricopa Association of Governments (MAG), the regional agency for metropolitan Phoenix that provides long-range and sustainably oriented planning. They conducted continuous multi-year, multi-member, continental scale numerical experiments for several 2050 Sun Corridor growth and adaptation scenarios and compared results with a modern day Sun Corridor representation.

"For a maximum expansion scenario, we find greatest warming to occur during summer, in excess of 1 degree C (1.8 degrees F) when averaged over the entire state of Arizona. Warming remains considerable during both spring and fall seasons, approaching 0.9 C. For a minimum expansion scenario, the consistent theme of maximum warming during summer with reduced, although still significant, warming during spring and fall seasons persists," Georgescu added.

Whereas previous research has documented the contribution of cool roofs as an effective UHI mitigation approach, this work emphasizes the need to broadly evaluate impacts by exploring consequences that extend to hydrology and rainfall.

"Truly sustainable development will have to consider impacts extending beyond average temperature," Georgescu explained. "A crucial step in that approach is to identify potential adaptation and mitigation strategies and assess tradeoffs, to ensure that we make smart decisions with minimum damaging consequences."

All three co-authors are affiliated with ASU's College of Liberal Arts and Sciences and the Global Institute of Sustainability.


Story Source:

The above story is based on materials provided by Arizona State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. M Georgescu, A Mahalov, M Moustaoui. Seasonal hydroclimatic impacts of Sun Corridor expansion. Environmental Research Letters, 2012; 7 (3): 034026 DOI: 10.1088/1748-9326/7/3/034026

Cite This Page:

Arizona State University. "Arizona's Sun Corridor: White roofs can combat urban heat islands, but not without impact on regional hydroclimate." ScienceDaily. ScienceDaily, 7 September 2012. <www.sciencedaily.com/releases/2012/09/120907131636.htm>.
Arizona State University. (2012, September 7). Arizona's Sun Corridor: White roofs can combat urban heat islands, but not without impact on regional hydroclimate. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2012/09/120907131636.htm
Arizona State University. "Arizona's Sun Corridor: White roofs can combat urban heat islands, but not without impact on regional hydroclimate." ScienceDaily. www.sciencedaily.com/releases/2012/09/120907131636.htm (accessed August 23, 2014).

Share This




More Earth & Climate News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Airlines on Iceland Volcano Alert

Airlines on Iceland Volcano Alert

Reuters - Business Video Online (Aug. 22, 2014) Iceland evacuates an area north of the country's Bardarbunga volcano, as the country's civil protection agency says it cannot rule out an eruption. Authorities have already warned airlines. As Joel Flynn reports, ash from the eruption of the Eyjafjallajokull volcano in 2010 shut down much of Europe's airspace for six days. Video provided by Reuters
Powered by NewsLook.com
Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Microbrewery Chooses Special Can for Its Beer

Microbrewery Chooses Special Can for Its Beer

AP (Aug. 22, 2014) Aluminum giant, Novelis, has partnered with Red Hare Brewing Company to introduce the first certified high-content recycled beverage can. (Aug. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins