Featured Research

from universities, journals, and other organizations

Crows react to threats in human-like way

Date:
September 11, 2012
Source:
University of Washington
Summary:
Crows and humans share the ability to recognize faces and associate them with negative and positive feelings. The way the brain activates during that process is something the two species also appear to share, according to new research.

Ila Palmquist, a member of John Marzluff’s laboratory group, wears a threatening mask while catching and handling crows. The mask carries a neutral expression so the associations made by the crows was based on their treatment.
Credit: Marzluff Lab/U of Washington

Cross a crow and it'll remember you for years.

Crows and humans share the ability to recognize faces and associate them with negative, as well as positive, feelings. The way the brain activates during that process is something the two species also appear to share, according to new research being published this week.

"The regions of the crow brain that work together are not unlike those that work together in mammals, including humans," said John Marzluff, University of Washington professor of environmental and forest sciences. "These regions were suspected to work in birds but not documented until now.

"For example it appears that birds have a region of their brain that is analogous to the amygdala of mammals," he said. "The amygdala is the region of the vertebrate brain where negative associations are stored as memories. Previous work primarily concerned its function in mammals while our work shows that a similar system is at work in birds. Our approach could be used in other animals -- such as lizards and frogs -- to see if the process is similar in those vertebrates as well."

Marzluff is the lead author of a paper being published the week of Sept. 10 in the online edition of the Proceedings of the National Academy of Sciences.

Previous research on the neural circuitry of animal behavior has been conducted using well-studied, often domesticated, species like rats, chickens, zebra finches, pigeons and rhesus macaques -- and not wild animals like the 12 adult male crows in this study.

The crows were captured by investigators all wearing masks that the researchers referred to as the threatening face. The crows were never treated in a threatening way, but the fact they'd been captured created a negative association with the mask they saw. Then for the four weeks they were in captivity, they were fed by people wearing a mask different from the first, this one called the caring face. The masks were based on actual people's faces and both bore neutral expressions so the associations made by the crows was based on their treatment.

In most previous neurological studies of animals, the work usually starts by sedating the animals, Marzluff said. Instead the approach developed by the UW involved injecting a glucose fluid commonly used in brain imaging into the bodies of fully alert crows that then went back to moving freely about their cages. The fluid flooded to the parts of the crow brains that were most active as they were exposed for about 15 minutes to someone wearing either the threatening or caring mask.

Then the birds were sedated and scans made of their brains. All the birds were returned to the wild once all the work was completed.

"Our approach has wide applicability and potential to improve our understanding of the neural basis for animal behavior," wrote Marzluff and co-authors Donna Cross, Robert Miyaoka and Satoshi Minoshima, all faculty members with the UW's radiology department. The department funded the preliminary work while the main project was conducted using money from theUW's Royalty Research Fund.

Most neurological studies to date in birds have concerned their songs -- how their brain registers what they hear, how they learn and come up with songs of their own. This new approach enables researchers to study the visual system of birds and how the brain integrates visual sensation into behavioral action, Marzluff said.

Among other things the findings have implications for lowering the stress of captive animals, he said.

"By feeding and caring for birds in captivity their brain activity suggests that the birds view their keepers as valued social partners, rather than animals that must be feared. So, to keep captive animals happy we need to treat them well and do so consistently," he said.

Intriguingly, Marzluff said the findings might also offer a way to reduce conflict between birds and endangered species on which they might be feeding. In the Mojave Desert, for instance, ravens prey on endangered desert tortoises. And on the West and East coasts, crows and ravens prey on threatened snowy plovers.

"Our studies suggest that we can train these birds to do the right thing," Marzluff said. "By paring a negative experience with eating a tortoise or a plover, the brain of the birds quickly learns the association. To reduce predation in a specific area we could train birds to avoid that area or that particular prey by catching them as they attempt to prey on the rare species."

The partnering of neuroscientists with ecologists could be used to better understand the neural basis of cognition in widely diverse animals, said co-author Cross. For example, her suggestion to use the glucose technique prior to brain scans, so the crows could be fully awake, could be used for other animals.

"This was a true collaboration that would never be possible without the people that were involved with very different areas of expertise," she said.


Story Source:

The above story is based on materials provided by University of Washington. The original article was written by Sandra Hines. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. M. Marzluff, R. Miyaoka, S. Minoshima, D. J. Cross. Brain imaging reveals neuronal circuitry underlying the crow's perception of human faces. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1206109109

Cite This Page:

University of Washington. "Crows react to threats in human-like way." ScienceDaily. ScienceDaily, 11 September 2012. <www.sciencedaily.com/releases/2012/09/120911091710.htm>.
University of Washington. (2012, September 11). Crows react to threats in human-like way. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2012/09/120911091710.htm
University of Washington. "Crows react to threats in human-like way." ScienceDaily. www.sciencedaily.com/releases/2012/09/120911091710.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) — According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com
Ramen Health Risks: The Dark Side of the Noodle

Ramen Health Risks: The Dark Side of the Noodle

AP (Aug. 21, 2014) — South Koreans eat more instant ramen noodles per capita than anywhere else in the world. But American researchers say eating too much may increase the risk of diabetes, heart disease and stroke. (Aug. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins