Featured Research

from universities, journals, and other organizations

Mutation breaks HIV's resistance to drugs

Date:
September 13, 2012
Source:
University of Missouri-Columbia
Summary:
The human immunodeficiency virus (HIV) can contain dozens of different mutations, called polymorphisms. In a recent study an international team of researchers found that one of those mutations, called 172K, made certain forms of the virus more susceptible to treatment. Soon, doctors will be able to use this knowledge to improve the drug regiment they prescribe to HIV-infected individuals.

The human immunodeficiency virus (HIV) can contain dozens of different mutations, called polymorphisms. In a recent study an international team of researchers, including MU scientists, found that one of those mutations, called 172K, made certain forms of the virus more susceptible to treatment. Soon, doctors will be able to use this knowledge to improve the drug regiment they prescribe to HIV-infected individuals.

"The 172K polymorphism makes certain forms of HIV less resistant to drugs," said Stefan Sarafianos, corresponding author of the study and researcher at MU's Bond Life Sciences Center. "172K doesn't affect the virus' normal activities. In some varieties of HIV that have developed resistance to drugs, when the 172K mutation is present, resistance to two classes of anti-HIV drugs is suppressed. We estimate up to 3 percent of HIV strains carry the 172K polymorphism."

HIV is a retrovirus, meaning it uses an enzyme called reverse transcriptase to create copies of its own genetic code. These copies are inserted into the victim's own genes where the virus highjacks the host's cellular machinery in order to reproduce itself. Two classes of drugs, nucleoside (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs), can stop this process in its tracks.

However, some HIV strains have developed resistance to NRTIs and NNRTIs. The 172K polymorphism suppresses this resistance and allows both classes of drugs to fight HIV more efficiently. The mutation is believed to be the first of its kind that blocks resistance to two families of drugs.

"Clinical doctors use a database of HIV mutations and the drugs they are susceptible to when they prescribe treatments to an HIV-infected patient," Sarafianos said. "Our finding will be integrated into this database. Once that happens, when doctors learn that their patients have HIV strains that carry the 172K polymorphism, they will know that the infections can be fought better with NRTIs and NNRTIs."

One of Sarafianos' colleagues at the AIDS Clinical Center in Japan found the 172K polymorphism by accident. The mutation was first discovered in a patient, and the researchers were able to recreate it in the laboratory.

The study "HIV-1 Reverse Transcriptase Polymorphism 172K Suppresses the Effect of Clinically Relevant Drug Resistance Mutations to Both Nucleoside and Nonnucleoside RT Inhibitors," was published in the Journal of Biological Chemistry. The lead author was Atsuko Hachiya of the AIDS Clinical Center at Japan's National Center for Global Health and Medicine in Tokyo. Stefan Sarafianos is associate professor of molecular microbiology & immunology in the MU School of Medicine and associate professor of biochemistry in the College of Arts and Science. Sarafianos also is associated with the Bond Life Science Center.


Story Source:

The above story is based on materials provided by University of Missouri-Columbia. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Hachiya, B. Marchand, K. A. Kirby, E. Michailidis, X. Tu, K. Palczewski, Y. T. Ong, Z. Li, D. T. Griffin, M. M. Schuckmann, J. Tanuma, S. Oka, K. Singh, E. N. Kodama, S. G. Sarafianos. HIV-1 reverse transcriptase (RT) polymorphism 172K, suppresses the effect of clinically relevant drug resistance mutations to both nucleoside and nonnucleoside RT inhibitors. Journal of Biological Chemistry, 2012; DOI: 10.1074/jbc.M112.351551

Cite This Page:

University of Missouri-Columbia. "Mutation breaks HIV's resistance to drugs." ScienceDaily. ScienceDaily, 13 September 2012. <www.sciencedaily.com/releases/2012/09/120913123524.htm>.
University of Missouri-Columbia. (2012, September 13). Mutation breaks HIV's resistance to drugs. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/09/120913123524.htm
University of Missouri-Columbia. "Mutation breaks HIV's resistance to drugs." ScienceDaily. www.sciencedaily.com/releases/2012/09/120913123524.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins