Featured Research

from universities, journals, and other organizations

Like a spring in a toy car: Catalysis mechanism of cell growth protein Ras clarified

Date:
September 18, 2012
Source:
Ruhr-Universitaet-Bochum
Summary:
Proteins accelerate certain chemical reactions in cells by several orders of magnitude. The molecular mechanism by which the Ras protein accelerates the cleavage of the molecule GTP and thus slows cell growth is described by biophysicists. Using a combination of infrared spectroscopy and computer simulations, they showed that Ras puts a phosphate chain under tension to such an extent that a phosphate group can very easily detach -- the brake for cell growth. Mutated Ras is involved in tumor formation, because this reaction slows down and the brake for cell growth fails.

The proteins Ras (blue) and GAP (green) interact with guanosine triphosphate (GTP, yellow) and magnesium (pink). They tension the chain of three phosphate groups step by step to such an extent (right) that the third phosphate group easily detaches from the rest of the chain.
Credit: Till Rudack

Proteins accelerate certain chemical reactions in cells by several orders of magnitude. The molecular mechanism by which the Ras protein accelerates the cleavage of the molecule GTP and thus slows cell growth is described by biophysicists at the Ruhr-Universität Bochum led by Prof. Dr. Klaus Gerwert in the Online Early Edition of the journal PNAS. Using a combination of infrared spectroscopy and computer simulations, they showed that Ras puts a phosphate chain under tension to such an extent that a phosphate group can very easily detach -- the brake for cell growth. Mutated Ras is involved in tumour formation, because this reaction slows down and the brake for cell growth fails.

"Our findings could help to develop small molecules that restore the Ras proteins to the right speed," says Prof. Gerwert. "Such molecules would then be interesting for molecular cancer therapy."

On/off: the Ras code

The Ras protein switches the cell growth off by detaching a phosphate group from the small bound guanosine triphosphate, GTP for short. GTP has three interlinked phosphate groups. If it is present in water, the third phosphate group can split off spontaneously -- even without the help of the protein Ras. This process is very slow though. Ras accelerates the splitting by a magnitude of five, a second protein, called GAP, by a further magnitude of five. What causes this acceleration has now been found out by the Bochum team.

How Ras spans the phosphate chain

Ras brings the chain of three phosphate groups at the GTP into a certain shape. It turns the third and second phosphate group to each other so that the chain is tensioned. "Like winding up a spring in a toy car by turning a screw," explains Prof. Gerwert. "Ras is the screw, the phosphate groups form the spring." The protein GAP tensions the spring further by also turning the first phosphate group against the second. In this way, the GTP gets into such a high-energy state that the third phosphate group can easily detach from the chain -- like when the toy car drives off spontaneously after winding up the spring.

Infrared spectroscopy: high resolution, but only to be interpreted indirectly

The results were obtained by the Bochum researchers using the time-resolved fourier transform infrared spectroscopy (FTIR) developed at the Institute of Biophysics. With this technique, the scientists track reactions and interactions of proteins with high spatial and temporal resolution; much more precisely than using a microscope. "However, the spectroscopy does not deliver such nice pictures as a microscope, but only very complex infrared spectra," explains PD Dr. Carsten Kötting. "Like a secret code that has to be deciphered."

Quantum chemical simulations

To this end, Till Rudack simulated the protein responses on modern computing clusters and calculated the corresponding infrared spectra. Due to the enormous computational effort, large molecules such as a complete protein cannot currently be reliably described using these so-called quantum mechanical simulations. Therefore, the researchers limited their analysis to GTP and the part of the Ras or GAP protein that interacts directly with GTP. They described the rest of the proteins with a less elaborate molecular dynamics simulation. "When bringing together all the different simulations, it is easy to be led astray," says Till Rudack. "Therefore you have to check the quality of the results by comparing the simulated with the measured infrared spectra." If the spectra obtained with both techniques match, the structure of proteins can be determined to an accuracy of a millionth of a micrometre. This was the case in the Bochum study.

Potential uses for cancer therapy

Molecular cancer therapy is already used successfully with diseases such as chronic myeloid leukemia (CLM) in the form of the drug Gleevec. Molecules with a similar effect against the mutated Ras protein have not yet been found. "Since we are now able to investigate the reactions of the Ras protein with significantly better resolution, new hope is forming that it will be possible to defuse the mutated molecule using drugs such as Gleevec and restore the rhythm of the cell" says Gerwert.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Rudack, F. Xia, J. Schlitter, C. Kotting, K. Gerwert. Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations. Proceedings of the National Academy of Sciences, 2012; 109 (38): 15295 DOI: 10.1073/pnas.1204333109

Cite This Page:

Ruhr-Universitaet-Bochum. "Like a spring in a toy car: Catalysis mechanism of cell growth protein Ras clarified." ScienceDaily. ScienceDaily, 18 September 2012. <www.sciencedaily.com/releases/2012/09/120918145053.htm>.
Ruhr-Universitaet-Bochum. (2012, September 18). Like a spring in a toy car: Catalysis mechanism of cell growth protein Ras clarified. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2012/09/120918145053.htm
Ruhr-Universitaet-Bochum. "Like a spring in a toy car: Catalysis mechanism of cell growth protein Ras clarified." ScienceDaily. www.sciencedaily.com/releases/2012/09/120918145053.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins