Featured Research

from universities, journals, and other organizations

The 'slippery slope to slime': Overgrown algae causing coral reef declines

Date:
September 19, 2012
Source:
Oregon State University
Summary:
Researchers for the first time have confirmed some of the mechanisms by which overfishing and nitrate pollution can help destroy coral reefs -- it appears they allow an overgrowth of algae that can bring with it unwanted pathogens, choke off oxygen and disrupt helpful bacteria.

Algae on coral reef. In an experiment conducted by researchers at Oregon State University, this coral is trying to deal with increasing amounts of algal growth.
Credit: Photo courtesy of Oregon State University

Researchers at Oregon State University for the first time have confirmed some of the mechanisms by which overfishing and nitrate pollution can help destroy coral reefs -- it appears they allow an overgrowth of algae that can bring with it unwanted pathogens, choke off oxygen and disrupt helpful bacteria.

These "macroalgae," or large algal species, are big enough to essentially smother corals. They can get out of control when sewage increases nitrate levels, feeds the algae, and some of the large fish that are most effective at reducing the algal buildup are removed by fishing.

Scientists found that macroalgal competition decreased coral growth rates by about 37 percent and had other detrimental effects. Other research has documented some persistent states of hypoxia.

Researchers call this process "the slippery slope to slime."

Findings on the research were just published in PLoS One, a professional journal.

"There is evidence that coral reefs around the world are becoming more and more dominated by algae," said Rebecca Vega-Thurber, an OSU assistant professor of microbiology. "Some reefs are literally covered up in green slime, and we wanted to determine more precisely how this can affect coral health."

The new study found that higher levels of algae cause both a decrease in coral growth rate and an altered bacterial community. The algae can introduce some detrimental pathogens to the coral and at the same time reduce levels of helpful bacteria. The useful bacteria are needed to feed the corals in a symbiotic relationship, and also produce antibiotics that can help protect the corals from other pathogens.

One algae in particular, Sargassum, was found to vector, or introduce a microbe to corals, a direct mechanism that might allow introduction of foreign pathogens.

There are thousands of species of algae, and coral reefs have evolved with them in a relationship that often benefits the entire tropical marine ecosystem. When in balance, some algae grow on the reefs, providing food to both small and large fish that nibble at the algal growth. But the algal growth is normally limited by the availability of certain nutrients, especially nitrogen and phosphorus, and some large fish such as parrot fish help eat substantial amounts of algae and keep it under control.

All of those processes can be disrupted when algal growth is significantly increased by the nutrients and pollution from coastal waste water, and overfishing reduces algae consumption at the same time.

"This shows that some human actions, such as terrestrial pollution or overfishing, can affect everything in marine ecosystems right down to the microbes found on corals," Vega-Thurber said. "We've suspected before that increased algal growth can bring new diseases to corals, and now for the first time have demonstrated in experiments these shifts in microbial communities."

Some mitigation of the problem is already being done on high-value coral reefs by mechanically removing algae, Vega-Thurber said, but the best long-term solution is to reduce pollution and overfishing so that a natural balance can restore itself.

Corals are one of Earth's oldest animal life forms, evolving around 500 million years ago. They host thousands of species of fish and other animals, are a major component of marine biodiversity in the tropics, and are now in decline around the world. Reefs in the Caribbean Sea have declined more than 80 percent in recent decades.

The work was supported by the National Science Foundation.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Rebecca Vega Thurber, Deron E. Burkepile, Adrienne M. S. Correa, Andrew R. Thurber, Andrew A. Shantz, Rory Welsh, Catharine Pritchard, Stephanie Rosales. Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides. PLoS ONE, 2012; 7 (9): e44246 DOI: 10.1371/journal.pone.0044246

Cite This Page:

Oregon State University. "The 'slippery slope to slime': Overgrown algae causing coral reef declines." ScienceDaily. ScienceDaily, 19 September 2012. <www.sciencedaily.com/releases/2012/09/120919135421.htm>.
Oregon State University. (2012, September 19). The 'slippery slope to slime': Overgrown algae causing coral reef declines. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2012/09/120919135421.htm
Oregon State University. "The 'slippery slope to slime': Overgrown algae causing coral reef declines." ScienceDaily. www.sciencedaily.com/releases/2012/09/120919135421.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins