Featured Research

from universities, journals, and other organizations

A novel function for p27 protein in the control of interneuron migration in the developing cerebral cortex

Date:
October 2, 2012
Source:
University of Liège
Summary:
These results by GIGA-Neurosciences researchers (University of Liège, Belgium) increase our understanding of the mechanisms that drive neuronal migration in the cerebral cortex. Disruption of neuronal migration is associated with various neurological disorders characterized by mental retardation, epilepsy,  learning disabilities, or autism.

New results by GIGA-Neurosciences researchers (University of Liège, Belgium) increase our understanding of the mechanisms that drive neuronal migration in the cerebral cortex. Disruption of neuronal migration is associated with various neurological disorders characterized by mental retardation, epilepsy, learning disabilities, or autism.

In a study published in Developmental Cell, the group of Laurent Nguyen, Research Associate of the FRS-FNRS and WELBIO investigator at GIGA-Neurosciences (University of Liège) has discovered a novel function for p27 in the control of interneuron migration in the developing cerebral cortex.

The cerebral cortex is one of the most intricate region of the brain whose formation requires migration and integration of two classes of neurons, the projection neurons and the interneurons. These neurons are born in different places and use distinct migration modes to reach the cortex. While several signalling pathways involving various molecules have already been associated with projection neuron migration, the molecular mechanisms that control interneurons migration remain so far elusive.

In this study, the Nguyen's group unveiled a novel activity of p27, a protein initialy described for its activity as cell cycle regulator, in dynamic remodelling of the cell skeleton, named cytoskeleton, that underlies tangential migration of interneurons in the cerebral cortex. The first author of the paper, Juliette Godin who is an EMBO postdoctoral fellow in the Nguyen lab, declared : " At the molecular level, p27 acts on two cytoskeletal components, the actin and the microtubules. It promotes nucleokinesis and branching of the growth cone through regulation of actine. In addition, it promotes microtubule polymerisation in extending neurites. Both activities are required for proper tangential migration of interneurons in the cortex."

It is worth noting that microtubules are ubiquitous components of the cytoskeleton that contribute to cell integrity as well as cell migration and cell division. These cellular processes are impaired in various neurological disorders as well as in most cancers. " Our results are of particular significance because they demonstrate for the first time that p27 is a microtubule-associated protein that promote their polymerisation," said Laurent Nguyen.

Overall, these results increase our understanding of the mechanisms that drive neuronal migration in the cerebral cortex. Disruption of neuronal migration is associated with various neurological disorders characterized by mental retardation, epilepsy, learning disabilities, or autism.


Story Source:

The above story is based on materials provided by University of Liège. Note: Materials may be edited for content and length.


Journal Reference:

  1. Juliette D. Godin, Noémie Thomas, Sophie Laguesse, Lina Malinouskaya, Pierre Close, Olivier Malaise, Audrey Purnelle, Olivier Raineteau, Kenneth Campbell, Matthew Fero, Gustave Moonen, Brigitte Malgrange, Alain Chariot, Christine Metin, Arnaud Besson, Laurent Nguyen. p27Kip1 Is a Microtubule-Associated Protein that Promotes Microtubule Polymerization during Neuron Migration. Developmental Cell, 2012; DOI: 10.1016/j.devcel.2012.08.006

Cite This Page:

University of Liège. "A novel function for p27 protein in the control of interneuron migration in the developing cerebral cortex." ScienceDaily. ScienceDaily, 2 October 2012. <www.sciencedaily.com/releases/2012/10/121002113416.htm>.
University of Liège. (2012, October 2). A novel function for p27 protein in the control of interneuron migration in the developing cerebral cortex. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2012/10/121002113416.htm
University of Liège. "A novel function for p27 protein in the control of interneuron migration in the developing cerebral cortex." ScienceDaily. www.sciencedaily.com/releases/2012/10/121002113416.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) — Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) — A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) — A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins