Science News

... from universities, journals, and other research organizations

Zinc Fingers: A New Tool in the Fight Against Huntington's Disease

Oct. 10, 2012 — Huntington's disease (HD) is an inherited genetic disorder caused by the multiple repetition of a DNA sequence (the nucleotides CAG) in the gene encoding a protein called "Huntingtin". People who do not suffer from the disease have this sequence repeated 10 to 29 times. But in an affected person, the triplet is present more than 35 times.


Share This:

Huntingtin protein can be found in various tissues of the human body and is essential for the development and survival of neurons in adults. When the mutant gene is present, an aberrant form of the Hungtingtin protein is produced, causing the symptoms of the disease: involuntary movements, changes in behavior and dementia, among others. Although there are several promising studies, there is currently no cure for HD. There are only palliative treatments of symptoms, and Huntington's patients die about 15 years after the symptoms onset.

Unlike other neurodegenerative diseases (such as Alzheimer or Parkinson), only a single gene is responsible for HD (i.e. the disorders is monogenic), and a therapy based on the inhibition of the gene, will open new perspectives of research for the development of a treatment.

A recently developed tool by scientists around the world is based on the modification of proteins that are found naturally in all living beings. These proteins are called Zinc Finger proteins, and can recognize and bind to specific DNA sequences. This enables the regulation of those genes to which they are attached.

A study conducted by researchers of the Centre for Genomic Regulation (CRG) in Barcelona provides positive results reducing the chromosomal expression of the mutant gene, which would prevent the development of disease. The research is published in Early Edition by the journal Proceedings of the National Academy of Sciences (PNAS).

"We designed specific ZFP that recognize and specifically bind to more than 35 repetitions of CAG triplet, preventing the expression of the gene containing these repeats and reducing the production of the mutant Huntingtin protein. When applying this treatment to a transgenic mouse model carrying the human mutant Huntingtin gene, we observed a delayed onset of the symptoms, "says Mireia Garriga-Canut, first author of the study and researcher at the Gene Network Engineering group at the CRG. Another co-author of the study, Carmen Agustín Pavón, adds that "the next step is to optimize the design for an effective and durable treatment for patients. This would pave the way to find a therapy for Huntington's disease".

The research was funded by the FP7 program of the European Commission and the Ministry of Science and Innovation of Spain.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by Centre for Genomic Regulation, via AlphaGalileo.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Mireia Garriga-Canut, Carmen Agustín-Pavón, Frank Herrmann, Aurora Sánchez, Mara Dierssen, Cristina Fillat, and Mark Isalan. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1206506109
APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,690

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Doggy Genes

Molecular biologists have completely sequenced the first dog genome. Understanding how genetics plays a role in canine diseases could lead to new. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?