Featured Research

from universities, journals, and other organizations

Strengthening a billion-dollar gene in soybeans

Date:
October 15, 2012
Source:
University of Illinois College of Agricultural, Consumer and Environmental Sciences
Summary:
Soybean cyst nematode does hundreds of millions of dollars' worth of damage each year. Crop sciences researchers think they may have found a way to strengthen plant resistance.

A plant infested with SCN in the field. The little white dots on the roots are female nematodes that have emerged from the roots.
Credit: Image courtesy of University of Illinois College of Agricultural, Consumer and Environmental Sciences

Soybean cyst nematode (SCN) does hundreds of millions of dollars' worth of damage each year. Matt Hudson and Brian Diers, crop sciences researchers at the University of Illinois and Andrew Bent at the University of Wisconsin, think they may have found a way to strengthen plant resistance. The research has just been published in Science Express.

Related Articles


Diers and Hudson, with researchers at Wisconsin and the University of Nebraska, have been studying an area on chromosome 18 called Rhg1 (Resistance to H. glycines) that is known to be the location of the main source of SCN resistance. Rhg1 disrupts the formation and maintenance of potential nematode-feeding sites on plant roots.

Most SCN-resistant soybeans in the Midwest are bred to contain Rhg1, but no one knew the DNA sequence of the gene that was responsible for the resistance. Diers wanted to find it.

"You could say it's a billion-dollar gene because it's in many varieties, it's widely used, and it's protecting varieties against these nematodes," he explained.

Using fine mapping, which is a technique that involves mapping genes in a very constrained area, Diers narrowed the search down to a few gene candidates. At that point, Hudson and Bent got involved in the analysis.

By then, the soybean genome sequence had been completed, greatly facilitating their research. "It became possible to know which genes were within the genetic intervals that people had historically used to confer traits like nematode resistance," Hudson said.

"When we had the genome sequenced, most people were shocked by how many genes there were in regions that people considered to be one gene," he continued. "By doing these fine-mapping experiments, you could get it down to a smaller number of possible genes."

There was, however, one big problem: the soybean that had been sequenced was not nematode-resistant.

"So, however many genes there were in the Rhg1 interval, we knew that the gene that actually makes the plants nematode-resistant wasn't there," Hudson said.

They went back to the nematode-resistant line and sequenced the genome in the interval. When they finished, they saw something very unusual. Rather than finding a gene in the resistant line that was not present in the susceptible line or changes in a gene that was present in both, they saw that a group of four genes had been replicated several times.

With further work, they found that nearly every soybean variety that is known to be SCN resistant has more than one set of these genes. The Peking variety has three copies of this group, and the Fayette variety has 10. The susceptible variety, Williams, has only one copy.

The Wisconsin researchers used a technique called Fiber-FISH to show that the genes make soybeans nematode-resistant. It allowed them to look into the DNA molecule and count the number of genes in a row. They also found that levels of expression of these genes were higher where there were more copies of the genes.

They artificially increased the expression rates of three of the genes together on soybean roots and were able to replicate the resistance effect. They were not able to replicate the effect using any of the genes on its own.

The results are interesting from a scientific point of view because having several genes next to each other that control the same trait is unusual in multicellular organisms. So is having an effect that is clearly due to multiple repeats of a stretch of DNA.

"We think we've found a new mechanism for plant resistance," Hudson said. "It's not a question of the presence versus the absence of a resistance gene, it's a question of the level of expression of these genes."

The practical implication of this study is that it suggests a way to engineer artificial resistance that is stronger than natural resistance. The researchers have received a grant from the United Soybean Board to pursue this.

The Soybean Disease Biotech Research Center at the U of I provided funding for this project.


Story Source:

The above story is based on materials provided by University of Illinois College of Agricultural, Consumer and Environmental Sciences. The original article was written by Susan Jongeneel. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. E. Cook, T. G. Lee, X. Guo, S. Melito, K. Wang, A. Bayless, J. Wang, T. J. Hughes, D. K. Willis, T. Clemente, B. W. Diers, J. Jiang, M. E. Hudson, A. F. Bent. Copy Number Variation of Multiple Genes at Rhg1 Mediates Nematode Resistance in Soybean. Science, 2012; DOI: 10.1126/science.1228746

Cite This Page:

University of Illinois College of Agricultural, Consumer and Environmental Sciences. "Strengthening a billion-dollar gene in soybeans." ScienceDaily. ScienceDaily, 15 October 2012. <www.sciencedaily.com/releases/2012/10/121015132551.htm>.
University of Illinois College of Agricultural, Consumer and Environmental Sciences. (2012, October 15). Strengthening a billion-dollar gene in soybeans. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2012/10/121015132551.htm
University of Illinois College of Agricultural, Consumer and Environmental Sciences. "Strengthening a billion-dollar gene in soybeans." ScienceDaily. www.sciencedaily.com/releases/2012/10/121015132551.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins