Featured Research

from universities, journals, and other organizations

How bacteria living in toxic environments identify and expel arsenic

Date:
October 22, 2012
Source:
Weizmann Institute of Science
Summary:
Scientists reveal how bacteria living in arsenic-rich environments identify and expel the poison.

Not long ago, some unassuming bacteria found themselves at the center of a scientific controversy: A group claimed that these microorganisms, which live in an environment that is rich in the arsenic-based compound arsenate, could take up that arsenate and use it -- instead of the phosphate on which all known life on Earth depends. The claim, since disproved, raised another question: How do organisms living with arsenate pick and choose the right substance?

Chemically, arsenate is nearly indistinguishable from phosphate. Prof. Dan Tawfik of the Biological Chemistry Department says: "Phosphate forms highly stable bonds in DNA and other key biological compounds, while bonds to arsenate are quickly broken. But how does a microorganism surrounded by arsenate distinguish between two molecules that are almost the same size and have identical shapes and ionic properties?"

To investigate, Tawfik, postdoctoral fellow Dr. Mikael Elias, Ph.D. student Alon Wellner and lab assistant Korina Goldin, in collaboration with Tobias Erb and Julia Vorholt of ETH Zurich, looked at a protein in bacteria that takes up phosphate. This protein, called PBP (short for phosphate binding protein), sits near the bacteria's outer membrane, where it latches onto phosphates and passes them on to pumps that transport them into the cell.

In research that recently appeared in Nature, the team compared the activity of several different PBPs -- some from bacteria like E. coli that are sensitive to arsenate and others, like those from the arsenic-rich environment, which are tolerant of the chemical. While the PBPs in the ordinary bacterium were about 500 times more likely to bind phosphate over arsenate, in the arsenic-tolerant bacterium that factor jumped to around 5000. In other words, to cope with their toxic environment, the bacteria evolved a mechanism of extreme selectivity to ensure their supply of phosphate while keeping the arsenate out.

Elias then compared phosphate and arsenate binding by crystallizing PBPs along with one of the two compounds. But the initial comparison suggested that when arsenate bound to the protein, it did so in just the same way as phosphate. Elias suspected that the key might lie in a single, highly unusual bond between a hydrogen atom in the protein and the molecule. This bond had been previously noted but ignored, as phosphate binding occurred with or without it.

To see the difference, the team had to stretch the limits of crystallization technology, getting the resolution to less than one angstrom -- fine enough to identify individual hydrogen atoms and compare their bonds. Only then were they able to identify a single disparity: The angles of that unusual hydrogen bond were different. Inside a tight cavity within the PBP structure, phosphate binds at a "textbook angle," according to Elias. The slightly larger arsenate molecule, on the other hand, gets pushed up against the hydrogen and bonds at unnatural, distorted angles. Tawfik thinks that the angle is likely to lead to repulsion between the molecule and other atoms in the cavity, preventing the PBP from passing arsenate into the cell's interior.

Tawfik: "These findings may go beyond the solving of a biological mystery. Because phosphates are scarce in many environments, there is quite a bit of interest in understanding how this crucial resource is taken up by organisms. This first observation of a PBP discrimination mechanism is an exciting demonstration of the exquisite fine tuning that enables proteins to distinguish between two nearly-identical molecules."


Story Source:

The above story is based on materials provided by Weizmann Institute of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mikael Elias, Alon Wellner, Korina Goldin-Azulay, Eric Chabriere, Julia A. Vorholt, Tobias J. Erb, Dan S. Tawfik. The molecular basis of phosphate discrimination in arsenate-rich environments. Nature, 2012; DOI: 10.1038/nature11517

Cite This Page:

Weizmann Institute of Science. "How bacteria living in toxic environments identify and expel arsenic." ScienceDaily. ScienceDaily, 22 October 2012. <www.sciencedaily.com/releases/2012/10/121022113600.htm>.
Weizmann Institute of Science. (2012, October 22). How bacteria living in toxic environments identify and expel arsenic. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/10/121022113600.htm
Weizmann Institute of Science. "How bacteria living in toxic environments identify and expel arsenic." ScienceDaily. www.sciencedaily.com/releases/2012/10/121022113600.htm (accessed July 31, 2014).

Share This




More Plants & Animals News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins