Featured Research

from universities, journals, and other organizations

Efficient, protein-based method for creating iPS cells developed

Date:
October 25, 2012
Source:
Stanford University Medical Center
Summary:
Researchers have devised an efficient and safer way to make induced pluripotent stem cells, or iPS cells, by using just the proteins that the genes encode.

Coaxing a humble skin cell to become a jack-of-all-trades pluripotent stem cell is feat so remarkable it was honored earlier this month with the Nobel Prize in Physiology or Medicine. Stem cell pioneer Shinya Yamanaka, MD, PhD, showed that using a virus to add just four genes to the skin cell allowed it to become pluripotent, or able to achieve many different developmental fates. But researchers and clinicians have been cautious about promoting potential therapeutic uses for these cells because the insertion of the genes could render the cells cancerous.

Now researchers at the Stanford University School of Medicine have devised an efficient and safer way to make these induced pluripotent stem cells, or iPS cells, by using just the proteins that the genes encode.

It's not the first time such an approach has been tried. Many researchers have shown that using proteins to make a cell pluripotent, although possible, is far less efficient than the virus-based method. The unprecedented success of the Stanford researchers, however, was due to an unexpected discovery: The virus used in the original method is critical for more than just gene delivery.

"It had been thought that the virus served simply as a Trojan horse to deliver the genes into the cell," said John Cooke, MD, PhD, professor of medicine and associate director of the Stanford Cardiovascular Institute. "Now we know that the virus causes the cell to loosen its chromatin and make the DNA available for the changes necessary for it to revert to the pluripotent state."

Cooke is the senior author of the research, published in the Oct. 26 issue of Cell. Postdoctoral scholars Jieun Lee, PhD, and Nazish Sayed, MD, PhD, are co-first authors of the study.

iPS cells, which don't require human embryos, offer a possible alternative for some of the ethical dilemmas associated with stem cell research. They're created from adult cells that have already assumed a specialized function in the body. Until Yamanaka's discovery, it was thought that these cells could never revert to the pluripotent stem cell from which they originated. But Yamanaka showed that these highly specialized cells are more developmentally flexible, or plastic, than previously thought. In the presence of just four genes (identified because they are highly expressed by embryonic stem cells), they can assume the characteristics of embryonic stem cells and, under the right conditions, can become nearly any cell type.

Now Cooke's research has identified an important component of how this transformation happens.

"We found that when a cell is exposed to a pathogen, it changes to adapt or defend itself against a challenge," said Cooke. "Part of this innate immunity includes increasing access to its DNA, which is normally tightly packaged. This allows the cell to reach into its genetic toolbox and take out what it needs to survive." It also allows the pluripotency-inducing proteins to modify the DNA and transform a skin or other specialized cell into an embryonic-stem-cell-like changeling.

Because the cells activate an immune response similar to inflammation in the presence of viral genetic material, the researchers termed the process "transflammation." They believe their finding could pave the way to the use of iPS cells in humans and shed light on the biological pathways by which pluripotency occurs.

Cooke and his colleagues began by working to optimize the use of cell-permeable proteins to reprogram adult, specialized cells to become pluripotent. They knew that the proteins made it into the cell's nucleus and that, in the laboratory, they were able to bind to the correct DNA sequences. They were also able to maintain pluripotency in cells that had been reprogrammed by other means. So why were the proteins so much more inefficient than the viral-based method?

The breakthrough came when they compared the gene expression patterns of the cells exposed to the cell-permeable proteins with those of cells infected by the gene-bearing virus: They were quite different. Cooke wondered if some property of the virus could be responsible.

The researchers repeated the experiment with the cell-permeable proteins, but also included an unrelated virus. The efficiency of the pluripotency transformation increased dramatically. Further investigation revealed that the effect was due to the activation within the cell of what is called the toll-like receptor-3 pathway; triggering the pathway with a small molecule mimicking the viral genetic material had a similar effect.

"These proteins are non-integrating, and so we don't have to worry about any viral-induced damage to the host genome," said Cooke, who also noted that the use of cell-permeable proteins can confer a greater level of control of the reprogramming process and may lead to the use of iPS cells in human therapies. It also opens up new alternatives.

"Now that we understand that the cell assumes greater plasticity when challenged by a pathogen, we can theoretically use this information to further manipulate the cells to induce direct reprogramming," said Cooke.

Direct reprogramming involves inducing a specialized cell like a skin cell to become a different type of cell, like an endothelial cell, without first going through an intermediate pluripotent state. Stanford researcher Marius Wernig, MD, PhD, used direct reprogramming to successfully transform human skin cells into functional neurons.

Other Stanford co-authors of the study include postdoctoral scholars Arwen Hunter, PhD, Kin Fai Au, PhD, and Wing T.J. Wong, PhD; research associate Eduard Yakubov, PhD; and Renee Reijo Pera, PhD, professor of obstetrics and gynecology.

The research was supported by the National Institutes of Health and the Tobacco Related Disease Research Program of the University of California.


Story Source:

The above story is based on materials provided by Stanford University Medical Center. The original article was written by Krista Conger. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University Medical Center. "Efficient, protein-based method for creating iPS cells developed." ScienceDaily. ScienceDaily, 25 October 2012. <www.sciencedaily.com/releases/2012/10/121025122218.htm>.
Stanford University Medical Center. (2012, October 25). Efficient, protein-based method for creating iPS cells developed. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2012/10/121025122218.htm
Stanford University Medical Center. "Efficient, protein-based method for creating iPS cells developed." ScienceDaily. www.sciencedaily.com/releases/2012/10/121025122218.htm (accessed August 1, 2014).

Share This




More Health & Medicine News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Quintuplets Head Home

Texas Quintuplets Head Home

Reuters - US Online Video (Aug. 1, 2014) After four months in the hospital, the first quintuplets to be born at Baylor University Medical Center head home. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Patient Coming to U.S. for Treatment

Ebola Patient Coming to U.S. for Treatment

Reuters - US Online Video (Aug. 1, 2014) A U.S. aid worker infected with Ebola while working in West Africa will be treated in a high security ward at Emory University in Atlanta. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Vaccine Might Be Coming, But Where's It Been?

Ebola Vaccine Might Be Coming, But Where's It Been?

Newsy (Aug. 1, 2014) Health officials are working to fast-track a vaccine — the West-African Ebola outbreak has killed more than 700. But why didn't we already have one? Video provided by Newsy
Powered by NewsLook.com
Study Links Certain Birth Control Pills To Breast Cancer

Study Links Certain Birth Control Pills To Breast Cancer

Newsy (Aug. 1, 2014) Previous studies have made the link between birth control and breast cancer, but the latest makes the link to high-estrogen oral contraceptives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins