Featured Research

from universities, journals, and other organizations

A new order in the quantum world: Using laser beams scientists generated quantum matter with novel, crystal-like properties

Date:
November 2, 2012
Source:
Max Planck Institute of Quantum Optics
Summary:
By using laser beams, scientists have generated quantum matter with novel, crystal-like properties.

Illustration of an ordering of five Rydberg-atoms. Green: atoms in the ground state. Red: Rydberg-atoms. Violet: Sphere of influence of the Rydberg-atoms.
Credit: MPQ, Quantum Many-Body Systems Division

By using laser beams MPQ scientists generate quantum matter with novel, crystal-like properties.

Both high-valued diamond and low-prized graphite consist of exactly the same carbon atoms. The subtle but nevertheless important difference between the two materials is the geometrical configuration of their building blocks, with large consequences for their properties. There is no way any kind of material could be diamond and graphite at the same time. However, this limitation does not hold for quantum matter, as a team of the Quantum Many-Body Physics Division of Prof. Immanuel Bloch (Max-Planck-Institute of Quantum Optics and Ludwig-Maximilians-Universität München) was now able to demonstrate in experiments with ultracold quantum gases.

Under the influence of laser beams single atoms would arrange to clear geometrical structures. But in contrast to classical crystals all possible configurations would exist at the same time, similar to the situation of Schrödinger's cat which is in a superposition state of both "dead" and "alive." The observation was made after transferring the particles to a highly excited so-called Rydberg-state. "Our experiment demonstrates the potential of Rydberg gases to realise exotic states of matter, thereby laying the basis for quantum simulations of, for example, quantum magnets," Professor Immanuel Bloch points out. The experimental work was supported by theoretical model calculations performed in the group of Dr. Thomas Pohl (Max Planck Institute for the Physics of Complex Systems, Dresden).

The experiment begins with cooling an ensemble of a couple of hundred rubidium atoms down to temperatures near absolute zero and catching the atoms in a light trap. The atomic cloud is then superimposed with a periodic light field -- a so-called optical lattice which provides an almost uniform filling in the central region of the trap. In the next step laser light is applied to transfer the atoms into a Rydberg-state in which the outermost shell electron is located at a huge distance from the atomic nucleus. As a result, the sphere of influence of these atoms is blown up, like a balloon, by a factor of about 10 000, reaching a comparatively "huge" diameter of several micrometres -- about the size of a tenth of the diameter of an average hair. These super-atoms now interact strongly via so-called van der Waals forces, which act over a long range.

For the Rydberg states chosen in the experiment, the interaction between the atoms is strongly repulsive, such that the atoms have to keep a minimum distance of several micrometers from each other. This mutual blockade leads to spatial correlations between the atoms such that, depending on the number of Rydberg-atoms, states with different geometrical configurations can emerge (see fig. 1). "However, we have to be aware that in our excited quantum system all geometrical orders are present at the same time. To be precise, all the excitation states form a coherent superposition," Dr. Marc Cheneau says, a scientist at the experiment. "This new state of matter is a very fragile, crystal-like formation; it exists as long as the excitation is sustained, and fades away once the beam is switched off."

As soon as the system undergoes an observation the superposition collapses into a specific geometric configuration of Rydberg-atoms, in analogy to the famous example of Schrödinger's cat which is found, once it is observed, either dead or alive. In a series of "snap shots" of such configurations the scientists revealed the different patterns of the individual excitation states. This is possible by using a special technique which images each Rydberg-atom directly with very high spatial resolution. "We observe the emergence of spatially ordered excitation patterns with random orientation, but a well defined geometry," Peter Schauß explains, who works at the experiment as a doctoral candidate. In order to recognize the fundamental structures the individual images are grouped according to the number of Rydberg-atoms. Typical microscopic configurations are shown in figure 2. Three atoms are arranged on an equilateral triangle, four or five atoms form quadratic or pentagonal configurations. The experimental data was in good agreement with numerical simulations of the many-body dynamics which were performed by the group of Dr. Thomas Pohl.

As far as the pattern of each individual excitation state is concerned the observations can be described classically. "In order to reveal the quantum physical behaviour of our system we investigated the time-dependent probabilities for the different excitation states, each characterized by a certain number of Rydberg-atoms," Peter Schauß says "Thereby we were able to discover that the dynamic of the excitation process is ten times as fast as in classical systems without blockade effects. This is a first indication that our system is indeed in a coherent quantum state, composed of different spatially ordered configurations."

A future challenge for the scientists is the deterministic preparation of Rydberg crystals with a well defined number of excitations. Combining the blockade effect with the single-atom addressing one could engineer quantum gates which can serve as an experimental toolbox for a variety of quantum simulations. Several Rydberg-atoms could be connected to a scalable quantum system for quantum information processing. Olivia Meyer-Streng


Story Source:

The above story is based on materials provided by Max Planck Institute of Quantum Optics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Peter Schauß, Marc Cheneau, Manuel Endres, Takeshi Fukuhara, Sebastian Hild, Ahmed Omran, Thomas Pohl, Christian Groß, Stefan Kuhr, and Immanuel Bloch. Observation of spatially ordered structures in a two-dimensional Rydberg gas. Nature, November 1st, 2012 DOI: 10.1038/nature11596

Cite This Page:

Max Planck Institute of Quantum Optics. "A new order in the quantum world: Using laser beams scientists generated quantum matter with novel, crystal-like properties." ScienceDaily. ScienceDaily, 2 November 2012. <www.sciencedaily.com/releases/2012/11/121102084637.htm>.
Max Planck Institute of Quantum Optics. (2012, November 2). A new order in the quantum world: Using laser beams scientists generated quantum matter with novel, crystal-like properties. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/11/121102084637.htm
Max Planck Institute of Quantum Optics. "A new order in the quantum world: Using laser beams scientists generated quantum matter with novel, crystal-like properties." ScienceDaily. www.sciencedaily.com/releases/2012/11/121102084637.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) — The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) — The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) — President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) — Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins