Featured Research

from universities, journals, and other organizations

Bringing measuring accuracy to radical treatment

Date:
November 12, 2012
Source:
Springer Science+Business Media
Summary:
An international team of scientists has determined for the first time the absolute density of active substances called radicals found in a state of matter known as plasma, in a new study. These findings could have important implications for medicine -- for example, for stimulating tissue regeneration, or to induce a targeted antiseptic effect in vivo without affecting neighboring tissues.

An international team of scientists working at the Plasma Technology research unit at Ghent University, Belgium, has determined for the first time the absolute density of active substances called radicals found in a state of matter known as plasma, in a study about to be published in EPJ D. These findings could have important implications for medicine -- for example, for stimulating tissue regeneration, or to induce a targeted antiseptic effect in vivo without affecting neighbouring tissues.

Related Articles


Qing Xiong and colleagues utilised laser fluorescence spectroscopy (LIF), a detection method used to estimate the density of radicals in plasma. Plasma is made of charged species, active molecules such as radicals and atoms.

The authors chose to focus on OH radicals because they are one of the most important reactive species in plasma science due to their high level of oxidation. This means that chemical reactions with OH initiate the destruction of harmful components either in the human body or in nature such as carbon monoxide, volatile organic compounds and methane.

The problem is that, up to now, laser-induced fluorescent capability to measure the absolute density of radicals has been very limited because of issues with registering and analysing the fluorescence signal.

In this study, the authors present a simplified model which takes into account energy transfer stemming from the radicals' vibrations. It can be used to analyse the LIF signal at regular atmospheric pressure. They then confirm the validity of their model experimentally, with a plasma jet made of Argon gas mixed with water molecules.

The calculation of one-dimensional line-averaged OH density made in this paper could also be extended to a two-dimensional spatial resolution of the OH radicals in future work.

For more information, please visit:


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Q. Xiong, A. Nikiforov, L. Li2, N. Britun, R. Snyders, X. P. Lu, C. Leys. Absolute OH density determination by laser induced fluorescence spectroscopy in an atmospheric pressure RF plasma jet. European Physical Journal D, 2012; DOI: 10.1140/epjd/e2012-30474-8

Cite This Page:

Springer Science+Business Media. "Bringing measuring accuracy to radical treatment." ScienceDaily. ScienceDaily, 12 November 2012. <www.sciencedaily.com/releases/2012/11/121112101415.htm>.
Springer Science+Business Media. (2012, November 12). Bringing measuring accuracy to radical treatment. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2012/11/121112101415.htm
Springer Science+Business Media. "Bringing measuring accuracy to radical treatment." ScienceDaily. www.sciencedaily.com/releases/2012/11/121112101415.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

HTC And Valve Team Up For Virtual Reality Headset

HTC And Valve Team Up For Virtual Reality Headset

Newsy (Mar. 1, 2015) HTC unveiled Vive, its new virtual reality headset, Sunday. The device is supported by gaming company Valve, which has made a push into the market. Video provided by Newsy
Powered by NewsLook.com
Rehab Robot Helps Restore Damaged Muscles and Nerves

Rehab Robot Helps Restore Damaged Muscles and Nerves

Reuters - Innovations Video Online (Mar. 1, 2015) A rehabilitation robot prototype to help restore deteriorated nerves and muscles using electromyography and computer games. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Elon Musk's Hyperloop Moves Forward

Elon Musk's Hyperloop Moves Forward

Buzz60 (Feb. 27, 2015) Zipping around at 800-miles an hour is coming closer to reality in California. An entire town is being built around Elon Musk&apos;s Hyperloop concept and it wants you to stop in for a ride when it&apos;s ready. Brett Larson is on board. Video provided by Buzz60
Powered by NewsLook.com
Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins