Featured Research

from universities, journals, and other organizations

Scientists discover ways to optimize light sources for vision: Tuning lighting devices could save billions

Date:
November 15, 2012
Source:
St. Joseph's Hospital and Medical Center
Summary:
Vision researchers have made a groundbreaking discovery into the optimization of light sources to human vision. By tuning lighting devices to work more efficiently with the human brain, the researchers believe billions of dollars in energy costs could be saved.

By tuning lighting devices to work more efficiently with the human brain the researchers believe billions of dollars in energy costs could be saved.
Credit: araraadt / Fotolia

Vision researchers at Barrow Neurological Institute have made a groundbreaking discovery into the optimization of light sources to human vision. By tuning lighting devices to work more efficiently with the human brain, the researchers believe billions of dollars in energy costs could be saved.

The research was conducted by Stephen Macknik, PhD, of Barrow's Laboratory of Behavioral Neurophysiology, and Susana Martinez-Conde, PhD, of Barrow's Laboratory of Visual Neuroscience. The study is published Proceedings of the National Academy of Sciences. The paper is believed to be the first attempt to tune light-emitting devices to the optimal temporal dynamics of the human visual system.

The discovery concerns the way humans perceive temporal modulations of light. For example, most light-emitting devices, such as light bulbs, video monitors and televisions, flicker. Faster flicker rates result in reduced perception of flicker, which is more comfortable to viewers. In studying this phenomenon in the brain, the researchers discovered that there is a range of flicker dynamics of light that optimizes the perceived brightness of the light without increasing power.

"We found a temporal sweet spot in visual perception that can be exploited to obtain significant savings by redesigning light emitting devices to flicker with optimal dynamics to activate visual system neurons in the human brain," says Dr. Macknik.

The researchers estimate that if every light-emitting device in the U.S. -- from light bulbs to cell phones -- operated at optimal efficiency for the human visual system, it could result in billions of dollars of savings in electricity and power.

To come to their conclusion, the researchers conducted experiments into two contradictory theories of temporal visual perception, or how bright a light appears. Bloch's Law states that the perceived contrast of a visual stimulus increases with its duration, but eventually plateaus at approximately 100 milliseconds. For example, a 5-millisecond flash will appear half as bright as a 10-millisecond flash, but a 200-millisecond flash will be just as bright as one of 400 milliseconds. The Broca-Sulzer Effect, on the other hand, states that perceived contrast increases with duration initially, but then peaks and falls again.

The researchers discovered that the discrepancy between Bloch's Law and the Broca-Sulzer Effect is caused by an intrinsic bias among experiment subjects, leading to dramatically skewed data. By improving their experimental design to overcome this bias, something that has never been before reported or intentionally controlled for, the results demonstrated that temporal vision actually follows the Broca-Sulzer Effect.

"Researchers have been studying temporal vision for more than 125 years, but because ours is the first experiment of its kind to control for all known forms of criteria, it is the first to accurately measure the role of temporal dynamics in brightness perception," says Dr. Macknik. "Thus, the power savings are ripe for the picking because we can adjust our lighting to flicker to take advantage of this peak in perception."


Story Source:

The above story is based on materials provided by St. Joseph's Hospital and Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. Rieiro, S. Martinez-Conde, A. P. Danielson, J. L. Pardo-Vazquez, N. Srivastava, S. L. Macknik. Optimizing the temporal dynamics of light to human perception. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1213170109

Cite This Page:

St. Joseph's Hospital and Medical Center. "Scientists discover ways to optimize light sources for vision: Tuning lighting devices could save billions." ScienceDaily. ScienceDaily, 15 November 2012. <www.sciencedaily.com/releases/2012/11/121115152659.htm>.
St. Joseph's Hospital and Medical Center. (2012, November 15). Scientists discover ways to optimize light sources for vision: Tuning lighting devices could save billions. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2012/11/121115152659.htm
St. Joseph's Hospital and Medical Center. "Scientists discover ways to optimize light sources for vision: Tuning lighting devices could save billions." ScienceDaily. www.sciencedaily.com/releases/2012/11/121115152659.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins