Featured Research

from universities, journals, and other organizations

How different nerve cells develop in the eye: Development in fish embryos with aid of 4D recordings

Date:
December 3, 2012
Source:
Heidelberg University
Summary:
Neurobiologists have gained new insights into how different types of nerve cells are formed in the developing animal. Through specialised microscopes, they were able to follow the development of the neural retina in the eye of living zebrafish embryos. Using high-resolution three-dimensional time-lapse images the researchers simultaneously observed the division of retinal nerve cells and changes in gene expression. This enabled them to gain insights into the way in which the two processes are linked during eye development and how the number and proportion of different cell types are regulated.

Neurobiologists from Heidelberg University's Centre for Organismal Studies (COS) have gained new insights into how different types of nerve cells are formed in the developing animal. Through specialised microscopes, they were able to follow the development of the neural retina in the eye of living zebrafish embryos. Using high-resolution three-dimensional time-lapse images the researchers simultaneously observed the division of retinal nerve cells and changes in gene expression. This enabled them to gain insights into the way in which the two processes are linked during eye development and how the number and proportion of different cell types are regulated.

Related Articles


A central question in developmental and regenerative neurobiology concerns the growth processes in animal organisms: How does a growing animal control the generation of the right number of each type and subtype of nerve cell in the brain and what is the relationship between these cells? The retina consists of many different kinds of nerve cells, which are well characterised and common to all vertebrates. Thus, the retina is a particularly good model for studying neuronal development. The researchers studied such retinal developmental processes in living organisms using zebrafish embryos, which are completely transparent and grow rapidly outside their mother.

All retinal cells, which are either excitatory or inhibitory, arise from a relatively small number of apparently homogeneous progenitor cells. These progenitors are able to generate all the different retinal cell types. "It is a challenge to understand how each progenitor cell contributes to the correct number and subtype of nerve cells that compose the final retinal network. Our work contributes to the understanding of how different genes orchestrate neuronal diversity along a progenitor cell lineage, that is the number of cell divisions and types of neurons generated," says Heidelberg researcher Dr. Lucia Poggi.

To tackle this challenge, Dr. Poggi's team used different lines of transgenic zebrafish, in which fluorescent reporter proteins highlight the expression of different genes in dividing cells. Working in close cooperation with Dr. Patricia Jusuf of the Australian Regenerative Medicine Institute at Monash University, the researchers found that some particular kinds of excitatory and inhibitory nerve cells tend to be lineally related, i.e. they derive from a common progenitor cell. For the first time, 4D recordings permitted an in vivo analysis of how the generation of particular inhibitory cells is regulated through coordination of cell division mode and gene expression within individual retinal progenitors of excitatory nerve cells.

This study has established a model of how cell lineage influences neuronal subtype specification and neuronal circuitry formation in the native environment of the vertebrate brain. The results were published in the Journal of Neuroscience.


Story Source:

The above story is based on materials provided by Heidelberg University. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. R. Jusuf, S. Albadri, A. Paolini, P. D. Currie, F. Argenton, S.-i. Higashijima, W. A. Harris, L. Poggi. Biasing Amacrine Subtypes in the Atoh7 Lineage through Expression of Barhl2. Journal of Neuroscience, 2012; 32 (40): 13929 DOI: 10.1523/JNEUROSCI.2073-12.2012

Cite This Page:

Heidelberg University. "How different nerve cells develop in the eye: Development in fish embryos with aid of 4D recordings." ScienceDaily. ScienceDaily, 3 December 2012. <www.sciencedaily.com/releases/2012/12/121203112444.htm>.
Heidelberg University. (2012, December 3). How different nerve cells develop in the eye: Development in fish embryos with aid of 4D recordings. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2012/12/121203112444.htm
Heidelberg University. "How different nerve cells develop in the eye: Development in fish embryos with aid of 4D recordings." ScienceDaily. www.sciencedaily.com/releases/2012/12/121203112444.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins