Featured Research

from universities, journals, and other organizations

Oil and water: An icy interaction when oil chains are short, but steamy when chains are long

Date:
December 3, 2012
Source:
Purdue University
Summary:
Water transforms into a previously unknown structure in between a liquid and a vapor when in contact with alcohol molecules containing long oily chains. However, around short oily chains water is more icelike. Water plays a huge role in biological processes, from protein folding to membrane formation, and it could be that this transformation is useful in a way not yet understood.

Purdue graduate student Joel Davis adjusts equipment used to identify a new structure water molecules assume when interacting with oil.
Credit: Purdue University photo/Mark Simons

Water transforms into a previously unknown structure in between a liquid and a vapor when in contact with alcohol molecules containing long oily chains, according to Purdue University researchers. However, around short oily chains water is more icelike.

Water plays a huge role in biological processes, from protein folding to membrane formation, and it could be that this transformation is useful in a way not yet understood, said Dor Ben-Amotz, the professor of chemistry who led the research.

Ben-Amotz's research team found that as they examined alcohols with increasingly long carbon chains, the transformation occurred at lower and lower temperatures.

When in contact with a chain seven carbon atoms long, the water molecules became much looser and more vaporlike at a temperature of 140 degrees Fahrenheit, which is about halfway between the melting and boiling points.

"For oils with chains longer than four carbons, or about one nanometer in length, we saw the water transform into a completely new structure as the temperature rose," Ben-Amotz said. "If the trend we saw holds true, then this transformation could be happening at body temperature around important physiological molecules like proteins and phospholipids."

Water responds very sensitively in its structure to small changes, he said.

"Water's versatility is what makes it so special," he said. "For instance, the surfaces of proteins have both oily and charged regions; and water changes itself to accommodate these very different components and everything in between. We are learning more about exactly how it does this."

The researchers found that water molecules interacting with the oil always formed a more ordered, icelike structure at lower temperatures, while the bulk of the water remained liquid. This ice-like structure would melt away as the temperatures increased and in longer molecules a new structure would appear, he said.

A paper detailing the National Science Foundation-funded work is published in the current issue of Nature and is also highlighted in a news and views article in the same issue. In addition to Ben-Amotz, co-authors include Purdue graduate student Joel Davis and postdoctoral fellows Kamil Gierszal and Ping Wang.

The team's observations add to a more than 70-year debate over the interaction of oil and water, with some studies suggesting that water forms little icebergs around the oil molecules, while others point to a more disordered, vaporlike water structure.

"This question was really up for grabs until we introduced an experimental method that could see these subtle changes in water structure," Ben-Amotz said. "Surprisingly, we found that both sides are right, and it depends on the size of the oil."

The challenge of the experiment was that the team needed to see the very small number of water molecules that are in contact with the oil chains in the presence of a very large number of other water molecules.

The team combined Raman scattering and multivariate curve resolution to create an analysis method capable of managing an unprecedented signal-to-noise ratio of 10,000-to-1.

"Most people never take a spectrum with a signal-to-noise ratio greater than 100-to-1, but if we performed this experiment that way we wouldn't see anything," Ben-Amotz said. "We needed to have a higher signal-to-noise ratio because we were looking for a needle in a mountain-sized haystack."

Raman scattering involves shooting a beam of light containing photons into a sample. As the photons hit molecules within the sample, they lose or gain energy. Such measurements create a spectrum of peaks that reveal the vibrational motions of the molecules present in the sample. Shifts in the peaks' shapes can show changes in the strength of bonds between water molecules and whether the molecules are becoming more or less ordered.

"With Raman scattering the bulk of the water creates a mountainous peak in the spectrum that buries everything else," Ben-Amotz said. "Multivariate curve resolution lets us see small changes in water structure under that mountain. As is often the case in science, the key was combining two already established techniques in a new way."

Davis said the team next plans to explore the effects of changes in pH and ionic charges on this transformation with the goal of making the experiments more relevant to proteins and biological systems.

"We are trying to better understand the driving forces of the behavior of proteins and cell membranes that are critical to our health," he said. "The role of water is an important piece of the puzzle."


Story Source:

The above story is based on materials provided by Purdue University. The original article was written by Elizabeth K. Gardner. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joel G. Davis, Kamil P. Gierszal, Ping Wang, Dor Ben-Amotz. Water structural transformation at molecular hydrophobic interfaces. Nature, 2012; 491 (7425): 582 DOI: 10.1038/nature11570

Cite This Page:

Purdue University. "Oil and water: An icy interaction when oil chains are short, but steamy when chains are long." ScienceDaily. ScienceDaily, 3 December 2012. <www.sciencedaily.com/releases/2012/12/121203183343.htm>.
Purdue University. (2012, December 3). Oil and water: An icy interaction when oil chains are short, but steamy when chains are long. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/12/121203183343.htm
Purdue University. "Oil and water: An icy interaction when oil chains are short, but steamy when chains are long." ScienceDaily. www.sciencedaily.com/releases/2012/12/121203183343.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins